Determine the amplitude, period, and phase shift of the following trigonometric equation:

[tex]\[ y = -7 - 9 \sin(x) \][/tex]

Amplitude: [tex]\(\square\)[/tex]

Period: [tex]\(\square\)[/tex]

Phase Shift: [tex]\(\square\)[/tex]



Answer :

To determine the characteristics of the trigonometric equation [tex]\(y = -7 - 9 \sin(x)\)[/tex], we need to identify the amplitude, period, and phase shift of the sine function involved.

### 1. Amplitude

The amplitude of a trigonometric function of the form [tex]\(y = A \sin(Bx + C) + D\)[/tex] is given by the coefficient [tex]\(A\)[/tex] of the sine term. In our equation, the sine coefficient is [tex]\(-9\)[/tex]. The amplitude is always taken as the absolute value of this coefficient.

[tex]\[ \text{Amplitude} = | -9 | = 9 \][/tex]

### 2. Period

The period of a sine function [tex]\(y = A \sin(Bx + C) + D\)[/tex] is determined by the coefficient [tex]\(B\)[/tex] in front of the [tex]\(x\)[/tex] inside the sine function. For a general sine function, the period is calculated as:

[tex]\[ \text{Period} = \frac{2\pi}{B} \][/tex]

In our equation [tex]\(y = -7 - 9 \sin(x)\)[/tex], there is no coefficient in front of [tex]\(x\)[/tex] (i.e., [tex]\(B = 1\)[/tex]). Thus, the period is:

[tex]\[ \text{Period} = \frac{2\pi}{1} = 2\pi \approx 6.283185307179586 \][/tex]

### 3. Phase Shift

The phase shift of a sine function [tex]\(y = A \sin(Bx + C) + D\)[/tex] is given by [tex]\(\frac{-C}{B}\)[/tex]. In our equation, since there is no horizontal shift term ([tex]\(C = 0\)[/tex]), the phase shift is:

[tex]\[ \text{Phase Shift} = \frac{0}{1} = 0 \][/tex]

Thus, there is no phase shift in our trigonometric equation.

### Summary

- Amplitude: 9
- Period: approximately 6.283185307179586
- Phase Shift: no phase shift

### Final Answer
- Amplitude: [tex]\(9\)[/tex]
- Period: [tex]\(6.283185307179586\)[/tex]
- Phase Shift: no phase shift