Answer :
Vale, resolvamos el problema paso a paso.
Primero, sabemos que 16 excursionistas tienen provisiones para 12 días. Utilicemos la constante de proporcionalidad.
1. Calculamos la constante de proporcionalidad [tex]\( K \)[/tex]:
[tex]\[ K = 16 \, (\text{excursionistas}) \times 12 \, (\text{días}) = 192 \][/tex]
### Parte 1: Duración de las provisiones con más excursionistas
Se agregan 18 personas al grupo de 16 excursionistas, por lo que el nuevo total de excursionistas es:
[tex]\[ \text{Nuevos excursionistas} = 16 + 18 = 34 \][/tex]
Para encontrar cuántos días durarán las provisiones con 34 excursionistas, usamos la constante de proporcionalidad:
[tex]\[ K = 192 = 34 \, (\text{excursionistas}) \times Y \, (\text{días}) \][/tex]
[tex]\[ Y = \frac{192}{34} \approx 5.647 \][/tex]
Así que las provisiones durarán aproximadamente 5.647 días con 34 excursionistas.
### Parte 2: Excursionistas que consumirían las provisiones en 32 días
Queremos saber para cuántos excursionistas durarán las provisiones 32 días:
[tex]\[ K = 192 = X \, (\text{excursionistas}) \times 32 \, (\text{días}) \][/tex]
[tex]\[ X = \frac{192}{32} = 6 \][/tex]
Por lo tanto, las provisiones durarían 32 días para 6 excursionistas.
### Parte 3: Completar la tabla de proporcionalidad
Usamos la constante de proporcionalidad [tex]\( K = 192 \)[/tex] para completar la tabla. Para cada número de excursionistas, calculamos los días de provisionamiento:
[tex]\[ \begin{aligned} &6 \, (\text{excursionistas}) & Y = \frac{192}{6} &= 32 \\ &8 \, (\text{excursionistas}) & Y = \frac{192}{8} &= 24 \\ &12 \, (\text{excursionistas}) & Y = \frac{192}{12} &= 16 \\ &16 \, (\text{excursionistas}) & Y = \frac{192}{16} &= 12 \\ &24 \, (\text{excursionistas}) & Y = \frac{192}{24} &= 8 \\ &32 \, (\text{excursionistas}) & Y = \frac{192}{32} &= 6 \\ &48 \, (\text{excursionistas}) & Y = \frac{192}{48} &= 4 \\ &64 \, (\text{excursionistas}) & Y = \frac{192}{64} &= 3 \\ &96 \, (\text{excursionistas}) & Y = \frac{192}{96} &= 2 \\ \end{aligned} \][/tex]
Por lo tanto, la tabla queda completada así:
[tex]\[ \begin{tabular}{|c|c|} \hline Excursionistas $( X )$ & Provisiones $( Y )$ \\ \hline 6 & 32 \\ \hline 8 & 24 \\ \hline 12 & 16 \\ \hline 16 & 12 \\ \hline 24 & 8 \\ \hline 32 & 6 \\ \hline 48 & 4 \\ \hline 64 & 3 \\ \hline 96 & 2 \\ \hline \end{tabular} \][/tex]
Resumiendo las respuestas:
- Las provisiones durarán aproximadamente 5.647 días para 34 excursionistas.
- Las provisiones durarán 32 días para 6 excursionistas.
- La tabla se completa con los valores calculados arriba.
Primero, sabemos que 16 excursionistas tienen provisiones para 12 días. Utilicemos la constante de proporcionalidad.
1. Calculamos la constante de proporcionalidad [tex]\( K \)[/tex]:
[tex]\[ K = 16 \, (\text{excursionistas}) \times 12 \, (\text{días}) = 192 \][/tex]
### Parte 1: Duración de las provisiones con más excursionistas
Se agregan 18 personas al grupo de 16 excursionistas, por lo que el nuevo total de excursionistas es:
[tex]\[ \text{Nuevos excursionistas} = 16 + 18 = 34 \][/tex]
Para encontrar cuántos días durarán las provisiones con 34 excursionistas, usamos la constante de proporcionalidad:
[tex]\[ K = 192 = 34 \, (\text{excursionistas}) \times Y \, (\text{días}) \][/tex]
[tex]\[ Y = \frac{192}{34} \approx 5.647 \][/tex]
Así que las provisiones durarán aproximadamente 5.647 días con 34 excursionistas.
### Parte 2: Excursionistas que consumirían las provisiones en 32 días
Queremos saber para cuántos excursionistas durarán las provisiones 32 días:
[tex]\[ K = 192 = X \, (\text{excursionistas}) \times 32 \, (\text{días}) \][/tex]
[tex]\[ X = \frac{192}{32} = 6 \][/tex]
Por lo tanto, las provisiones durarían 32 días para 6 excursionistas.
### Parte 3: Completar la tabla de proporcionalidad
Usamos la constante de proporcionalidad [tex]\( K = 192 \)[/tex] para completar la tabla. Para cada número de excursionistas, calculamos los días de provisionamiento:
[tex]\[ \begin{aligned} &6 \, (\text{excursionistas}) & Y = \frac{192}{6} &= 32 \\ &8 \, (\text{excursionistas}) & Y = \frac{192}{8} &= 24 \\ &12 \, (\text{excursionistas}) & Y = \frac{192}{12} &= 16 \\ &16 \, (\text{excursionistas}) & Y = \frac{192}{16} &= 12 \\ &24 \, (\text{excursionistas}) & Y = \frac{192}{24} &= 8 \\ &32 \, (\text{excursionistas}) & Y = \frac{192}{32} &= 6 \\ &48 \, (\text{excursionistas}) & Y = \frac{192}{48} &= 4 \\ &64 \, (\text{excursionistas}) & Y = \frac{192}{64} &= 3 \\ &96 \, (\text{excursionistas}) & Y = \frac{192}{96} &= 2 \\ \end{aligned} \][/tex]
Por lo tanto, la tabla queda completada así:
[tex]\[ \begin{tabular}{|c|c|} \hline Excursionistas $( X )$ & Provisiones $( Y )$ \\ \hline 6 & 32 \\ \hline 8 & 24 \\ \hline 12 & 16 \\ \hline 16 & 12 \\ \hline 24 & 8 \\ \hline 32 & 6 \\ \hline 48 & 4 \\ \hline 64 & 3 \\ \hline 96 & 2 \\ \hline \end{tabular} \][/tex]
Resumiendo las respuestas:
- Las provisiones durarán aproximadamente 5.647 días para 34 excursionistas.
- Las provisiones durarán 32 días para 6 excursionistas.
- La tabla se completa con los valores calculados arriba.