What is [tex]\(\sin 67^\circ\)[/tex]?

A. [tex]\(\frac{5}{12}\)[/tex]

B. [tex]\(\frac{5}{13}\)[/tex]

C. [tex]\(\frac{12}{5}\)[/tex]

D. [tex]\(\frac{12}{13}\)[/tex]



Answer :

To determine the value of [tex]\(\sin 67^{\circ}\)[/tex], we need to find its trigonometric value.

First, we know that the sine function for an angle in degrees can be found using the relation:

[tex]\[ \sin \theta \][/tex]

For [tex]\(\theta = 67^{\circ}\)[/tex]:

[tex]\[ \sin 67^{\circ} \approx 0.9205048534524404 \][/tex]

Next, let's compare this numerical value to the given multiple-choice options:

A. [tex]\(\frac{5}{12} \approx 0.4167\)[/tex]

B. [tex]\(\frac{5}{13} \approx 0.3846\)[/tex]

C. [tex]\(\frac{12}{5} = 2.4\)[/tex] (Note: Since [tex]\(\sin \theta\)[/tex] values range from -1 to 1, this option is not viable.)

D. [tex]\(\frac{12}{13} \approx 0.9231\)[/tex]

Given that [tex]\(0.9205048534524404\)[/tex] is closest to [tex]\(0.9231\)[/tex], the best-matching multiple-choice option is:

D. [tex]\(\frac{12}{13}\)[/tex].

So, the correct answer is:
D. [tex]\(\frac{12}{13}\)[/tex].