Which set of fractions is ordered from least to greatest?

A. [tex]\(\frac{5}{8}, \frac{8}{12}, \frac{3}{4}\)[/tex]

B. [tex]\(\frac{8}{12}, \frac{5}{8}, \frac{3}{4}\)[/tex]

C. [tex]\(\frac{3}{4}, \frac{5}{8}, \frac{8}{12}\)[/tex]

D. [tex]\(\frac{5}{8}, \frac{3}{4}, \frac{8}{12}\)[/tex]



Answer :

To determine which set of fractions is ordered from least to greatest, we need to compare the given fractions: [tex]\(\frac{5}{8}\)[/tex], [tex]\(\frac{8}{12}\)[/tex], and [tex]\(\frac{3}{4}\)[/tex].

Step-by-step:

1. Convert each fraction to its decimal form for easier comparison:
- [tex]\(\frac{5}{8} = 0.625\)[/tex]
- [tex]\(\frac{8}{12} = \frac{2}{3} \approx 0.666\overline{6}\)[/tex]
- [tex]\(\frac{3}{4} = 0.75\)[/tex]

2. Sort the decimal values from least to greatest:
- [tex]\(0.625\)[/tex] (the decimal value for [tex]\(\frac{5}{8}\)[/tex])
- [tex]\(0.666\overline{6}\)[/tex] (the decimal value for [tex]\(\frac{8}{12}\)[/tex])
- [tex]\(0.75\)[/tex] (the decimal value for [tex]\(\frac{3}{4}\)[/tex])

3. Match the sorted decimal values back to their respective fractions:
- [tex]\(0.625\)[/tex] corresponds to [tex]\(\frac{5}{8}\)[/tex]
- [tex]\(0.666\overline{6}\)[/tex] corresponds to [tex]\(\frac{8}{12}\)[/tex]
- [tex]\(0.75\)[/tex] corresponds to [tex]\(\frac{3}{4}\)[/tex]

4. List the fractions in order from least to greatest based on their decimal equivalents:
- [tex]\(\frac{5}{8}\)[/tex]
- [tex]\(\frac{8}{12}\)[/tex]
- [tex]\(\frac{3}{4}\)[/tex]

Therefore, the set of fractions ordered from least to greatest is:
[tex]\[ \boxed{\frac{5}{8}, \frac{8}{12}, \frac{3}{4}} \][/tex]

This matches with option A:
[tex]\[ A: \frac{5}{8}, \frac{8}{12}, \frac{3}{4} \][/tex]