There is 0.5 L of air in a rigid, sealed container at a pressure of 203 kPa and a temperature of 203 K. The container is heated to 273 K.

What is the final pressure of the air?

A. 102 kPa
B. 151 kPa
C. 273 kPa
D. 310 kPa



Answer :

To solve this problem, we will use the relationship given by the combined gas law, which can be simplified for a rigid, sealed container. For such a container, the volume (V) does not change, hence the relationship between the initial and final state of the gas, using the ideal gas law, can be given as:

[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]

where:
- [tex]\(P_1\)[/tex] is the initial pressure
- [tex]\(T_1\)[/tex] is the initial temperature
- [tex]\(P_2\)[/tex] is the final pressure
- [tex]\(T_2\)[/tex] is the final temperature

Given data:
- Initial pressure ([tex]\(P_1\)[/tex]) = 203 kPa
- Initial temperature ([tex]\(T_1\)[/tex]) = 203 K
- Final temperature ([tex]\(T_2\)[/tex]) = 273 K

We need to find the final pressure ([tex]\(P_2\)[/tex]).

Rearrange the equation to solve for [tex]\(P_2\)[/tex]:

[tex]\[ P_2 = P_1 \times \frac{T_2}{T_1} \][/tex]

Substitute the given values:

[tex]\[ P_2 = 203 \, \text{kPa} \times \frac{273 \, \text{K}}{203 \, \text{K}} \][/tex]

Perform the division inside the parenthesis:

[tex]\[ \frac{273 \, \text{K}}{203 \, \text{K}} = 1.345320 \][/tex]

Then multiply:

[tex]\[ P_2 = 203 \, \text{kPa} \times 1.345320 \approx 273 \, \text{kPa} \][/tex]

Thus, the final pressure of the air when the container is heated to 273 K is:

[tex]\[ \boxed{273 \, \text{kPa}} \][/tex]