A marble with a mass of 1.5 grams rolls at a constant rate of 0.50 cm/s across a table. What is the magnitude of the marble's momentum?

A. [tex]\( 3.0 \frac{g \cdot cm}{s} \)[/tex]
B. [tex]\( 2.0 \frac{g \cdot cm}{s} \)[/tex]
C. [tex]\( 1.0 \frac{g \cdot cm}{s} \)[/tex]
D. [tex]\( 0.75 \frac{g \cdot cm}{s} \)[/tex]



Answer :

To determine the magnitude of a marble’s momentum, we should use the classical equation for momentum, which is given by:

[tex]\[ \text{momentum} = \text{mass} \times \text{velocity} \][/tex]

Here, we have the following values provided:
- Mass (m) of the marble: [tex]\( 1.5 \)[/tex] grams
- Velocity (v) of the marble: [tex]\( 0.50 \)[/tex] cm/s

We plug these values into our momentum formula:

[tex]\[ \text{momentum} = 1.5 \, \text{grams} \times 0.50 \, \text{cm/s} \][/tex]

[tex]\[ \text{momentum} = 0.75 \, \left( \frac{\text{grams} \cdot \text{cm}}{\text{s}} \right) \][/tex]

Thus, the magnitude of the marble's momentum is:

[tex]\[ 0.75 \, \frac{\text{grams} \cdot \text{cm}}{\text{s}} \][/tex]

Therefore, the correct answer is:

[tex]\[ 0.75 \, \frac{g \cdot cm}{s} \][/tex]