Answer :

To solve the expression [tex]\(\pm \sqrt{-27}\)[/tex], we need to remember that taking the square root of a negative number yields an imaginary number. Here's the step-by-step process to find [tex]\( \pm \sqrt{-27} \)[/tex]:

1. Identify the negative under the square root: We start with [tex]\(\sqrt{-27}\)[/tex].

2. Express in terms of imaginary numbers: Recall that [tex]\(\sqrt{-1} = i\)[/tex]. Therefore, we can rewrite the expression as:
[tex]\[ \sqrt{-27} = \sqrt{27 \cdot -1} = \sqrt{27} \cdot \sqrt{-1} = \sqrt{27} \cdot i \][/tex]

3. Simplify the square root of the positive part: Next, we need to simplify [tex]\(\sqrt{27}\)[/tex]:
[tex]\[ \sqrt{27} = \sqrt{9 \cdot 3} = \sqrt{9} \cdot \sqrt{3} = 3\sqrt{3} \][/tex]

4. Combine the results: Putting these together, we have:
[tex]\[ \sqrt{-27} = 3\sqrt{3} \cdot i \][/tex]

Therefore, the solutions are:
[tex]\[ + \sqrt{-27} = +3\sqrt{3} \cdot i = 3\sqrt{3}i \][/tex]
and
[tex]\[ - \sqrt{-27} = -3\sqrt{3} \cdot i = -3\sqrt{3}i \][/tex]

5. Final answer: When expressed as a numerical form:
[tex]\[ 3\sqrt{3}i \approx 5.196152422706632i \][/tex]

Thus, the expression [tex]\(\pm \sqrt{-27} \)[/tex] results in:
[tex]\[ \pm \sqrt{-27} = \pm 5.196152422706632i \][/tex]

Hence, the complete solution is:
[tex]\[ \pm \sqrt{-27} = 5.196152422706632i, -5.196152422706632i \][/tex]