To determine which of the given integers is the least, we will first evaluate each mathematical expression:
Option A:
Evaluate [tex]\(-5 + (-2)\)[/tex]:
[tex]\[
-5 + (-2) = -5 - 2 = -7
\][/tex]
So, option A is [tex]\(-7\)[/tex].
Option B:
Evaluate [tex]\(-5 \div (-2)\)[/tex]:
[tex]\[
-5 \div (-2) = 2.5
\][/tex]
So, option B is [tex]\(2.5\)[/tex].
Option C:
Evaluate [tex]\(-5 \times (-2)\)[/tex]:
[tex]\[
-5 \times (-2) = 10
\][/tex]
So, option C is [tex]\(10\)[/tex].
Option D:
Option D directly gives us [tex]\(-5\)[/tex].
Now, we compare all the calculated values:
- Option A: [tex]\(-7\)[/tex]
- Option B: [tex]\(2.5\)[/tex]
- Option C: [tex]\(10\)[/tex]
- Option D: [tex]\(-5\)[/tex]
Among [tex]\(-7\)[/tex], [tex]\(2.5\)[/tex], [tex]\(10\)[/tex], and [tex]\(-5\)[/tex], the smallest number is [tex]\(-7\)[/tex].
Thus, the least value is option A, [tex]\(-7\)[/tex].