Sure! Let's solve the question step-by-step.
Given:
1. [tex]\( k = \frac{1}{2} \)[/tex]
2. We have two ordered pairs: [tex]\((6, 6)\)[/tex] and [tex]\((4, 6)\)[/tex].
Solution:
1. Value of [tex]\( k \)[/tex]:
- The problem gives [tex]\( k = \frac{1}{2} \)[/tex].
2. Comparing the ordered pairs [tex]\((6, 6)\)[/tex] and [tex]\((4, 6)\)[/tex]:
- In mathematics, when comparing ordered pairs [tex]\((a, b)\)[/tex] and [tex]\((c, d)\)[/tex], we start by comparing the first elements of each pair. If [tex]\( a > c \)[/tex], then [tex]\((a, b) > (c, d)\)[/tex].
- Here, we compare the first elements of the pairs:
- The first element of the first pair is 6.
- The first element of the second pair is 4.
3. Conclusion:
- Since 6 > 4, the ordered pair [tex]\((6, 6)\)[/tex] is greater than the ordered pair [tex]\((4, 6)\)[/tex].
So, the detailed answer incorporating these steps is:
- The value of [tex]\( k \)[/tex] is [tex]\( 0.5 \)[/tex].
- Comparing the ordered pairs, we find that [tex]\((6, 6)\)[/tex] is greater than [tex]\((4, 6)\)[/tex].
The final result is:
- [tex]\( k = 0.5 \)[/tex]
- The comparison result is True.