Answer :
To evaluate the expression [tex]\(3x + 2y + 2x\)[/tex] when [tex]\(x = 20\)[/tex] and [tex]\(y = -3\)[/tex], follow these steps:
1. Substitute the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] into the expression:
[tex]\[ 3(20) + 2(-3) + 2(20) \][/tex]
2. Calculate each term separately:
- For the term [tex]\(3x\)[/tex]:
[tex]\[ 3 \times 20 = 60 \][/tex]
- For the term [tex]\(2y\)[/tex]:
[tex]\[ 2 \times (-3) = -6 \][/tex]
- For the term [tex]\(2x\)[/tex]:
[tex]\[ 2 \times 20 = 40 \][/tex]
3. Combine the results:
[tex]\[ 60 + (-6) + 40 \][/tex]
4. Add the results step-by-step:
- First, add [tex]\(60\)[/tex] and [tex]\(-6\)[/tex]:
[tex]\[ 60 - 6 = 54 \][/tex]
- Then, add the result to [tex]\(40\)[/tex]:
[tex]\[ 54 + 40 = 94 \][/tex]
So, the value of the expression [tex]\(3x + 2y + 2x\)[/tex] when [tex]\(x = 20\)[/tex] and [tex]\(y = -3\)[/tex] is [tex]\(\boxed{94}\)[/tex].
1. Substitute the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] into the expression:
[tex]\[ 3(20) + 2(-3) + 2(20) \][/tex]
2. Calculate each term separately:
- For the term [tex]\(3x\)[/tex]:
[tex]\[ 3 \times 20 = 60 \][/tex]
- For the term [tex]\(2y\)[/tex]:
[tex]\[ 2 \times (-3) = -6 \][/tex]
- For the term [tex]\(2x\)[/tex]:
[tex]\[ 2 \times 20 = 40 \][/tex]
3. Combine the results:
[tex]\[ 60 + (-6) + 40 \][/tex]
4. Add the results step-by-step:
- First, add [tex]\(60\)[/tex] and [tex]\(-6\)[/tex]:
[tex]\[ 60 - 6 = 54 \][/tex]
- Then, add the result to [tex]\(40\)[/tex]:
[tex]\[ 54 + 40 = 94 \][/tex]
So, the value of the expression [tex]\(3x + 2y + 2x\)[/tex] when [tex]\(x = 20\)[/tex] and [tex]\(y = -3\)[/tex] is [tex]\(\boxed{94}\)[/tex].