Select the correct answer.

Two points located on [tex]\(\overleftrightarrow{JK}\)[/tex] are [tex]\(J(1, -4)\)[/tex] and [tex]\(K(-2, 8)\)[/tex]. What is the slope of [tex]\(\overleftrightarrow{JK}\)[/tex]?

A. -4
B. -2
C. [tex]\(-\frac{1}{4}\)[/tex]
D. [tex]\(\frac{1}{4}\)[/tex]
E. 4



Answer :

To find the slope of the line passing through the points [tex]\( J(1, -4) \)[/tex] and [tex]\( K(-2, 8) \)[/tex], we'll use the slope formula:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Where [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] are the coordinates of the points [tex]\( J \)[/tex] and [tex]\( K \)[/tex], respectively.

Let's assign the coordinates as follows:
[tex]\[ (x_1, y_1) = (1, -4) \][/tex]
[tex]\[ (x_2, y_2) = (-2, 8) \][/tex]

Now we substitute these values into the slope formula:

[tex]\[ \text{slope} = \frac{8 - (-4)}{-2 - 1} \][/tex]

Simplify the numerator and the denominator:

[tex]\[ \text{slope} = \frac{8 + 4}{-2 - 1} = \frac{12}{-3} \][/tex]

Finally, divide 12 by -3:

[tex]\[ \text{slope} = -4 \][/tex]

Therefore, the correct answer is:
A. -4