What is the radical part of both [tex]\( \sqrt[3]{54} \)[/tex] and [tex]\( \sqrt[3]{128} \)[/tex] when the expressions are simplified?

A. [tex]\( \sqrt[3]{2} \)[/tex]
B. [tex]\( \sqrt{2} \)[/tex]
C. [tex]\( \sqrt[3]{3} \)[/tex]
D. 2



Answer :

Certainly! Let's simplify the given cube roots and identify their radical parts.

1. Simplifying [tex]\(\sqrt[3]{54}\)[/tex]:

To simplify [tex]\(\sqrt[3]{54}\)[/tex]:

- Begin by finding the prime factorization of 54:
[tex]\[ 54 = 2 \times 3 \times 3 \times 3 = 2 \times 3^3 \][/tex]

- Rewrite the expression using these factors:
[tex]\[ \sqrt[3]{54} = \sqrt[3]{2 \times 3^3} \][/tex]

- We can separate the cube root as follows:
[tex]\[ \sqrt[3]{2 \times 3^3} = \sqrt[3]{2} \times \sqrt[3]{3^3} \][/tex]

- Since [tex]\(\sqrt[3]{3^3} = 3\)[/tex], simplify:
[tex]\[ \sqrt[3]{54} = 3 \times \sqrt[3]{2} \][/tex]

Hence, the radical part of [tex]\(\sqrt[3]{54}\)[/tex] is:
[tex]\[ \sqrt[3]{2} \][/tex]

2. Simplifying [tex]\(\sqrt[3]{128}\)[/tex]:

To simplify [tex]\(\sqrt[3]{128}\)[/tex]:

- Begin by finding the prime factorization of 128:
[tex]\[ 128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^7 \][/tex]

- Rewrite the expression using these factors:
[tex]\[ \sqrt[3]{128} = \sqrt[3]{2^7} \][/tex]

- We can separate the cube root as follows:
[tex]\[ \sqrt[3]{2^7} = \sqrt[3]{2^6 \times 2} = \sqrt[3]{(2^3)^2 \times 2} \][/tex]

- Since [tex]\(\sqrt[3]{(2^3)^2} = 2^2 = 4\)[/tex], simplify:
[tex]\[ \sqrt[3]{2^7} = 4 \times \sqrt[3]{2} \][/tex]

Hence, the radical part of [tex]\(\sqrt[3]{128}\)[/tex] is:
[tex]\[ \sqrt[3]{2} \][/tex]

Thus, for both [tex]\(\sqrt[3]{54}\)[/tex] and [tex]\(\sqrt[3]{128}\)[/tex], the radical part when the expressions are simplified is:
[tex]\[ \sqrt[3]{2} \][/tex]