If [tex]\( f(x) = 2(x)^2 + 5\sqrt{(x + 2)} \)[/tex], complete the following statement (round your answer to the nearest hundredth):

[tex]\( f(x) = \)[/tex] __________



Answer :

To solve the expression [tex]\( f(x) = 2x^2 + 5 \sqrt{x+2} \)[/tex] at [tex]\( x = 0 \)[/tex] and round the answer to the nearest hundredth, follow these steps:

1. Substitute [tex]\( x = 0 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(0) = 2(0)^2 + 5\sqrt{0 + 2} \][/tex]

2. Simplify the terms inside the function:
[tex]\[ 0^2 = 0 \][/tex]
[tex]\[ \sqrt{0 + 2} = \sqrt{2} \][/tex]

3. Calculate the values:
[tex]\[ 2(0)^2 = 2 \cdot 0 = 0 \][/tex]
[tex]\[ 5 \cdot \sqrt{2} \approx 5 \cdot 1.414 = 7.07 \][/tex]

4. Add the simplified terms together:
[tex]\[ f(0) = 0 + 7.07 = 7.07 \][/tex]

5. Present the final answer, rounded to the nearest hundredth:
[tex]\[ 7.07 \][/tex]

Therefore, the complete statement would be:
(A0) - [tex]\( \boxed{7.07} \)[/tex]