Answer :
Para determinar la ecuación punto-pendiente de las rectas dadas, utilizamos la fórmula de la forma punto-pendiente, que es:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Donde [tex]\((x_1, y_1)\)[/tex] es el punto dado y [tex]\(m\)[/tex] es la pendiente. Luego podemos convertir esta forma a la forma de la ecuación de la recta en su forma ordinaria [tex]\( y = mx + b \)[/tex].
Veamos cada caso paso a paso:
### 1. Punto [tex]\((3, 7)\)[/tex], Pendiente [tex]\(m = 4\)[/tex]
Primero aplicamos la fórmula punto-pendiente:
[tex]\[ y - 7 = 4(x - 3) \][/tex]
Ahora, desarrollamos la ecuación:
[tex]\[ y - 7 = 4x - 12 \][/tex]
Y despejamos [tex]\(y\)[/tex] para obtener la fórmula en forma de ecuación de la recta:
[tex]\[ y = 4x - 12 + 7 \][/tex]
[tex]\[ y = 4x - 5 \][/tex]
Entonces, la ecuación de la recta es:
[tex]\[ y = 4x - 5 \][/tex]
### 2. Punto [tex]\((-2, 5)\)[/tex], Pendiente [tex]\(m = -2\)[/tex]
Aplicamos la fórmula punto-pendiente:
[tex]\[ y - 5 = -2(x + 2) \][/tex]
Desarrollamos la ecuación:
[tex]\[ y - 5 = -2x - 4 \][/tex]
Despejamos [tex]\(y\)[/tex] para obtener la ecuación en forma de recta:
[tex]\[ y = -2x - 4 + 5 \][/tex]
[tex]\[ y = -2x + 1 \][/tex]
Entonces, la ecuación de la recta es:
[tex]\[ y = -2x + 1 \][/tex]
### 3. Punto [tex]\((0, -1)\)[/tex], Pendiente [tex]\(m = 1.2\)[/tex]
Aplicamos la fórmula punto-pendiente:
[tex]\[ y + 1 = 1.2(x - 0) \][/tex]
Desarrollamos la ecuación:
[tex]\[ y + 1 = 1.2x \][/tex]
Despejamos [tex]\(y\)[/tex] para obtener la ecuación en forma de recta:
[tex]\[ y = 1.2x - 1 \][/tex]
Entonces, la ecuación de la recta es:
[tex]\[ y = 1.2x - 1 \][/tex]
### 4. Punto [tex]\((-3, 0)\)[/tex], Pendiente [tex]\(m = 1\)[/tex]
Aplicamos la fórmula punto-pendiente:
[tex]\[ y - 0 = 1(x + 3) \][/tex]
Desarrollamos la ecuación:
[tex]\[ y = x + 3 \][/tex]
Entonces, la ecuación de la recta es:
[tex]\[ y = x + 3 \][/tex]
### Recapitulación de las ecuaciones:
1. [tex]\( y = 4x - 5 \)[/tex]
2. [tex]\( y = -2x + 1 \)[/tex]
3. [tex]\( y = 1.2x - 1 \)[/tex]
4. [tex]\( y = x + 3 \)[/tex]
Estas son las ecuaciones de las rectas correspondientes a los puntos y pendientes dados.
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Donde [tex]\((x_1, y_1)\)[/tex] es el punto dado y [tex]\(m\)[/tex] es la pendiente. Luego podemos convertir esta forma a la forma de la ecuación de la recta en su forma ordinaria [tex]\( y = mx + b \)[/tex].
Veamos cada caso paso a paso:
### 1. Punto [tex]\((3, 7)\)[/tex], Pendiente [tex]\(m = 4\)[/tex]
Primero aplicamos la fórmula punto-pendiente:
[tex]\[ y - 7 = 4(x - 3) \][/tex]
Ahora, desarrollamos la ecuación:
[tex]\[ y - 7 = 4x - 12 \][/tex]
Y despejamos [tex]\(y\)[/tex] para obtener la fórmula en forma de ecuación de la recta:
[tex]\[ y = 4x - 12 + 7 \][/tex]
[tex]\[ y = 4x - 5 \][/tex]
Entonces, la ecuación de la recta es:
[tex]\[ y = 4x - 5 \][/tex]
### 2. Punto [tex]\((-2, 5)\)[/tex], Pendiente [tex]\(m = -2\)[/tex]
Aplicamos la fórmula punto-pendiente:
[tex]\[ y - 5 = -2(x + 2) \][/tex]
Desarrollamos la ecuación:
[tex]\[ y - 5 = -2x - 4 \][/tex]
Despejamos [tex]\(y\)[/tex] para obtener la ecuación en forma de recta:
[tex]\[ y = -2x - 4 + 5 \][/tex]
[tex]\[ y = -2x + 1 \][/tex]
Entonces, la ecuación de la recta es:
[tex]\[ y = -2x + 1 \][/tex]
### 3. Punto [tex]\((0, -1)\)[/tex], Pendiente [tex]\(m = 1.2\)[/tex]
Aplicamos la fórmula punto-pendiente:
[tex]\[ y + 1 = 1.2(x - 0) \][/tex]
Desarrollamos la ecuación:
[tex]\[ y + 1 = 1.2x \][/tex]
Despejamos [tex]\(y\)[/tex] para obtener la ecuación en forma de recta:
[tex]\[ y = 1.2x - 1 \][/tex]
Entonces, la ecuación de la recta es:
[tex]\[ y = 1.2x - 1 \][/tex]
### 4. Punto [tex]\((-3, 0)\)[/tex], Pendiente [tex]\(m = 1\)[/tex]
Aplicamos la fórmula punto-pendiente:
[tex]\[ y - 0 = 1(x + 3) \][/tex]
Desarrollamos la ecuación:
[tex]\[ y = x + 3 \][/tex]
Entonces, la ecuación de la recta es:
[tex]\[ y = x + 3 \][/tex]
### Recapitulación de las ecuaciones:
1. [tex]\( y = 4x - 5 \)[/tex]
2. [tex]\( y = -2x + 1 \)[/tex]
3. [tex]\( y = 1.2x - 1 \)[/tex]
4. [tex]\( y = x + 3 \)[/tex]
Estas son las ecuaciones de las rectas correspondientes a los puntos y pendientes dados.