To determine the solubility product expression ([tex]\(K_{sp}\)[/tex]) for magnesium phosphate, [tex]\( \text{Mg}_3(\text{PO}_4)_2 \)[/tex], we need to consider its dissociation in water.
First, let’s write the balanced equation for the dissociation of [tex]\( \text{Mg}_3(\text{PO}_4)_2 \)[/tex] in water:
[tex]\[ \text{Mg}_3(\text{PO}_4)_2 (s) \leftrightarrow 3 \text{Mg}^{2+} (aq) + 2 \text{PO}_4^{3-} (aq) \][/tex]
To write the solubility product expression, we use the concentration of the ions produced in the saturated solution of the salt.
The general form of the solubility product expression, [tex]\( K_{sp} \)[/tex], is given by:
[tex]\[ K_{sp} = [\text{cation}]^{\text{coefficient}}[\text{anion}]^{\text{coefficient}} \][/tex]
For [tex]\( \text{Mg}_3(\text{PO}_4)_2 \)[/tex], the solubility product expression is:
[tex]\[ K_{sp} = [\text{Mg}^{2+}]^3 [\text{PO}_4^{3-}]^2 \][/tex]
So, the correct solubility product expression for [tex]\( \text{Mg}_3(\text{PO}_4)_2 \)[/tex] is:
[tex]\[ K_{sp} = [\text{Mg}^{2+}]^3 [\text{PO}_4^{3-}]^2 \][/tex]
This expression reflects the equilibrium concentrations of [tex]\( \text{Mg}^{2+} \)[/tex] and [tex]\( \text{PO}_4^{3-} \)[/tex] ions each raised to the power of their respective coefficients in the balanced dissociation equation.