The [tex]\( K_{sp} \)[/tex] of barium carbonate, [tex]\( BaCO_3 \)[/tex], is [tex]\( 2.58 \times 10^{-9} \)[/tex]. Calculate the molar solubility, [tex]\( S \)[/tex], of this compound.

[tex]\[ S = \ \square \ \text{M} \][/tex]



Answer :

To find the molar solubility, [tex]\( S \)[/tex], of barium carbonate ([tex]\(BaCO_3\)[/tex]), given its solubility product constant ([tex]\(K_{sp}\)[/tex]) of [tex]\(2.58 \times 10^{-9}\)[/tex], here are the steps we need to follow:

1. Write the dissolution equation for [tex]\(BaCO_3\)[/tex]:
[tex]\[ \text{BaCO}_3 (s) \rightleftharpoons \text{Ba}^{2+} (aq) + \text{CO}_3^{2-} (aq) \][/tex]

2. Define the expressions for the concentrations of the ions in terms of the molar solubility [tex]\( S \)[/tex]:
[tex]\[ [\text{Ba}^{2+}] = S \][/tex]
[tex]\[ [\text{CO}_3^{2-}] = S \][/tex]

3. Write the expression for the solubility product constant ([tex]\(K_{sp}\)[/tex]):
[tex]\[ K_{sp} = [\text{Ba}^{2+}] \cdot [\text{CO}_3^{2-}] \][/tex]

4. Substitute the concentrations in the [tex]\(K_{sp}\)[/tex] expression:
[tex]\[ K_{sp} = S \cdot S \][/tex]
[tex]\[ K_{sp} = S^2 \][/tex]

5. Solve for [tex]\( S \)[/tex]:
[tex]\[ S = \sqrt{K_{sp}} \][/tex]
[tex]\[ S = \sqrt{2.58 \times 10^{-9}} \][/tex]

6. Calculate the value of [tex]\( S \)[/tex]:
[tex]\[ S \approx 5.079370039680118 \times 10^{-5} \ \text{M} \][/tex]

Therefore, the molar solubility [tex]\( S \)[/tex] of [tex]\( BaCO_3 \)[/tex] is:
[tex]\[ S \approx 5.079 \times 10^{-5} \ \text{M} \][/tex]