Answer :
Sure, let's complete the table of values.
You have the function [tex]\(4^{-x}\)[/tex] and the values of [tex]\(x\)[/tex]. Now we need to find the corresponding values of [tex]\(4^{-x}\)[/tex] for [tex]\(x = 0\)[/tex], [tex]\(x = 2\)[/tex], and [tex]\(x = 4\)[/tex].
Given the table:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $4^{-x}$ \\ \hline -1 & 4 \\ \hline 0 & $a$ \\ \hline 2 & $b$ \\ \hline 4 & $c$ \\ \hline \end{tabular} \][/tex]
Now we find:
- When [tex]\(x = 0\)[/tex], [tex]\(4^{-0} = 1\)[/tex], so [tex]\(a = 1\)[/tex].
- When [tex]\(x = 2\)[/tex], [tex]\(4^{-2} = 0.0625\)[/tex], so [tex]\(b = 0.0625\)[/tex].
- When [tex]\(x = 4\)[/tex], [tex]\(4^{-4} = 0.00390625\)[/tex], so [tex]\(c = 0.00390625\)[/tex].
Therefore, the completed table and the values are:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $4^{-x}$ \\ \hline -1 & 4 \\ \hline 0 & 1 \\ \hline 2 & 0.0625 \\ \hline 4 & 0.00390625 \\ \hline \end{tabular} \][/tex]
[tex]\[ \begin{array}{l} a = 1, \quad b = 0.0625, \quad c = 0.00390625 \end{array} \][/tex]
You have the function [tex]\(4^{-x}\)[/tex] and the values of [tex]\(x\)[/tex]. Now we need to find the corresponding values of [tex]\(4^{-x}\)[/tex] for [tex]\(x = 0\)[/tex], [tex]\(x = 2\)[/tex], and [tex]\(x = 4\)[/tex].
Given the table:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $4^{-x}$ \\ \hline -1 & 4 \\ \hline 0 & $a$ \\ \hline 2 & $b$ \\ \hline 4 & $c$ \\ \hline \end{tabular} \][/tex]
Now we find:
- When [tex]\(x = 0\)[/tex], [tex]\(4^{-0} = 1\)[/tex], so [tex]\(a = 1\)[/tex].
- When [tex]\(x = 2\)[/tex], [tex]\(4^{-2} = 0.0625\)[/tex], so [tex]\(b = 0.0625\)[/tex].
- When [tex]\(x = 4\)[/tex], [tex]\(4^{-4} = 0.00390625\)[/tex], so [tex]\(c = 0.00390625\)[/tex].
Therefore, the completed table and the values are:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $4^{-x}$ \\ \hline -1 & 4 \\ \hline 0 & 1 \\ \hline 2 & 0.0625 \\ \hline 4 & 0.00390625 \\ \hline \end{tabular} \][/tex]
[tex]\[ \begin{array}{l} a = 1, \quad b = 0.0625, \quad c = 0.00390625 \end{array} \][/tex]