\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$\left(\frac{2}{3}\right)^x$[/tex] \\
\hline
-1 & [tex]$\frac{3}{2}$[/tex] \\
\hline
0 & [tex]$d$[/tex] \\
\hline
2 & [tex]$e$[/tex] \\
\hline
4 & [tex]$f$[/tex] \\
\hline
\end{tabular}

[tex]$d = \square$[/tex]

[tex]$e = \square$[/tex]

[tex]$f = \square$[/tex]



Answer :

Let's work through the calculations step-by-step to find the values for [tex]\( d \)[/tex], [tex]\( e \)[/tex], and [tex]\( f \)[/tex]:

1. First, let's calculate [tex]\( d \)[/tex]:

For [tex]\( x = 0 \)[/tex],
[tex]\[ d = \left( \frac{2}{3} \right)^0 \][/tex]

We know that any number raised to the power of 0 is 1. Therefore,
[tex]\[ d = 1.0 \][/tex]

2. Next, let's calculate [tex]\( e \)[/tex]:

For [tex]\( x = 2 \)[/tex],
[tex]\[ e = \left( \frac{2}{3} \right)^2 \][/tex]

When we square [tex]\(\frac{2}{3}\)[/tex], we get:
[tex]\[ e = \left( \frac{2}{3} \right) \times \left( \frac{2}{3} \right) = \frac{4}{9} = 0.4444444444444444 \][/tex]

So,
[tex]\[ e = 0.4444444444444444 \][/tex]

3. Finally, let's calculate [tex]\( f \)[/tex]:

For [tex]\( x = 4 \)[/tex],
[tex]\[ f = \left( \frac{2}{3} \right)^4 \][/tex]

When we raise [tex]\(\frac{2}{3}\)[/tex] to the 4th power, we perform the multiplication:
[tex]\[ f = \left( \frac{2}{3} \right) \times \left( \frac{2}{3} \right) \times \left( \frac{2}{3} \right) \times \left( \frac{2}{3} \right) = \frac{16}{81} = 0.19753086419753083 \][/tex]

So,
[tex]\[ f = 0.19753086419753083 \][/tex]

Now, let's fill in the values in the table:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $\left(\frac{2}{3}\right)^x$ \\ \hline -1 & $\frac{3}{2}$ \\ \hline 0 & 1.0 \\ \hline 2 & 0.4444444444444444 \\ \hline 4 & 0.19753086419753083 \\ \hline \end{tabular} \][/tex]

Therefore,
[tex]\[ d = 1.0 \][/tex]
[tex]\[ e = 0.4444444444444444 \][/tex]
[tex]\[ f = 0.19753086419753083 \][/tex]

That concludes the step-by-step solution!