Given the ordered pair (1, -3), where will the transformed image be after the following composition: [tex]\( D_2 \circ R_{y-axis} \)[/tex]?

A. [tex]\((2, -6)\)[/tex]
B. [tex]\((-2, -6)\)[/tex]
C. [tex]\((2, 6)\)[/tex]
D. [tex]\((-2, 6)\)[/tex]



Answer :

Let's solve this problem step-by-step by applying the transformations to the given ordered pair [tex]\((1, -3)\)[/tex].

1. Reflection over the y-axis [tex]\( R_{y \text{-axis}} \)[/tex]:
- Reflection over the y-axis changes the sign of the x-coordinate while keeping the y-coordinate the same.
- So, reflecting the point [tex]\((1, -3)\)[/tex] over the y-axis gives us:
[tex]\[ (-1, -3) \][/tex]

2. Dilation [tex]\( D_2 \)[/tex]:
- A dilation by a factor of 2, denoted as [tex]\( D_2 \)[/tex], scales both the x and y coordinates by 2.
- Applying this dilation to the reflected point [tex]\((-1, -3)\)[/tex] results in:
[tex]\[ (2 \cdot -1, 2 \cdot -3) = (-2, -6) \][/tex]

Thus, after performing the reflection over the y-axis followed by the dilation by a factor of 2, the transformed image of the point [tex]\((1, -3)\)[/tex] will be [tex]\(\boxed{(-2, -6)}\)[/tex].