What volume of hydrogen is needed to generate 446 L of NH₃ at STP?

N₂(g) + 3 H₂(g) → 2 NH₃(g)

Volume (L) H₂:



Answer :

To determine the volume of hydrogen gas ([tex]\(H_2\)[/tex]) needed to produce 446 liters of ammonia ([tex]\(NH_3\)[/tex]) at STP according to the chemical equation:

[tex]\[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \][/tex]

follow these steps:

1. Understand the balanced chemical equation: This tells us the stoichiometric relationship between the reactants and products. Specifically, 1 mole (or volume) of nitrogen gas ([tex]\(N_2\)[/tex]) reacts with 3 moles (or volumes) of hydrogen gas ([tex]\(H_2\)[/tex]) to produce 2 moles (or volumes) of ammonia ([tex]\(NH_3\)[/tex]).

2. Identify the ratio: From the balanced equation, 3 volumes of [tex]\(H_2\)[/tex] produce 2 volumes of [tex]\(NH_3\)[/tex]. This can be expressed as:

[tex]\[ \frac{3 \text{ volumes } H_2}{2 \text{ volumes } NH_3} \][/tex]

3. Given data: You are given that 446 liters of [tex]\(NH_3\)[/tex] are produced.

4. Set up the proportion: To find the volume of [tex]\(H_2\)[/tex] needed, use the stoichiometric ratio:

[tex]\[ \text{Volume of } H_2 = \left( \frac{3 \text{ volumes } H_2}{2 \text{ volumes } NH_3} \right) \times \text{volume of } NH_3 \][/tex]

5. Plug in the known value: Replace the volume of [tex]\(NH_3\)[/tex] with 446 liters:

[tex]\[ \text{Volume of } H_2 = \left( \frac{3}{2} \right) \times 446 \text{ liters} \][/tex]

6. Calculate the result:

[tex]\[ \text{Volume of } H_2 = \frac{3}{2} \times 446 \][/tex]
[tex]\[ \text{Volume of } H_2 = 1.5 \times 446 \][/tex]
[tex]\[ \text{Volume of } H_2 = 669 \text{ liters} \][/tex]

Therefore, the volume of hydrogen gas needed to produce 446 liters of ammonia at STP is 669 liters.