Simplify and solve for [tex]\(\sqrt{3a - 8b}\)[/tex].

Given:
[tex]\[ M(x, y) = -8x^{a-b} \cdot y^{a+2b} \][/tex]
[tex]\[ N(x, y) = 21x^7 \cdot y^{18-a} \][/tex]

[tex]\( M(x, y) \)[/tex] and [tex]\( N(x, y) \)[/tex] are similar terms.



Answer :

To solve for [tex]\( \sqrt{3a - 8b} \)[/tex] given the expressions:

[tex]\[ \begin{aligned} \text{M(x; y)} &= -8 x^{a-b} \cdot y^{a+2b}, \\ \text{N(x; y)} &= 21 x^7 \cdot y^{18-a}, \end{aligned} \][/tex]

we need to determine the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]. For the terms to be similar, the powers of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in both expressions must be equal. Therefore, we can set up the following system of equations based on the exponents:

1. From the exponents of [tex]\(x\)[/tex]:
[tex]\[ a - b = 7 \][/tex]

2. From the exponents of [tex]\(y\)[/tex]:
[tex]\[ a + 2b = 18 - a \][/tex]

First, rewrite the second equation to make it easier to solve:
[tex]\[ a + 2b + a = 18 \][/tex]
[tex]\[ 2a + 2b = 18 \][/tex]
[tex]\[ a + b = 9 \][/tex]

We now have the system of linear equations:
[tex]\[ \begin{cases} a - b = 7 \\ a + b = 9 \end{cases} \][/tex]

We can solve this system using substitution or elimination. Here, we will use the elimination method. Add the two equations to eliminate [tex]\(b\)[/tex]:

[tex]\[ (a - b) + (a + b) = 7 + 9 \][/tex]
[tex]\[ 2a = 16 \][/tex]
[tex]\[ a = 8 \][/tex]

Now substitute [tex]\(a = 8\)[/tex] into one of the original equations to find [tex]\(b\)[/tex]. We'll use [tex]\(a + b = 9\)[/tex]:

[tex]\[ 8 + b = 9 \][/tex]
[tex]\[ b = 1 \][/tex]

So, the values are [tex]\(a = 8\)[/tex] and [tex]\(b = 1\)[/tex].

Next, we need to calculate [tex]\( \sqrt{3a - 8b} \)[/tex]:

[tex]\[ \sqrt{3a - 8b} = \sqrt{3(8) - 8(1)} = \sqrt{24 - 8} = \sqrt{16} = 4 \][/tex]

Thus, the final value is:
[tex]\[ \boxed{4} \][/tex]