Dima asked her seventh-period class how many times they attended a summer camp since first grade. She put her data in the table and used the shaded rows to find three sample means.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Summer Camp Attendance} \\
\hline 3 & 1 & 0 & 4 & 1 \\
\hline 4 & 2 & 3 & 0 & 5 \\
\hline 0 & 1 & 1 & 2 & 0 \\
\hline 4 & 1 & 4 & 4 & 2 \\
\hline 3 & 2 & 0 & 1 & 4 \\
\hline
\end{tabular}

What is the range of the values for the sample means?

A. 1
B. 1.2
C. 1.8
D. 2



Answer :

To determine the range of the sample means, let's go through each step logically.

1. Identify the shaded rows in the table:
- The original table provided by Dima is:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \multicolumn{5}{|c|}{\text{Summer Camp Attendance}} \\ \hline 3 & 1 & 0 & 4 & 1 \\ \hline 4 & 2 & 3 & 0 & 5 \\ \hline 0 & 1 & 1 & 2 & 0 \\ \hline 4 & 1 & 4 & 4 & 2 \\ \hline 3 & 2 & 0 & 1 & 4 \\ \hline \end{array} \][/tex]
- The shaded rows are:
- Row 2: [tex]\([4, 2, 3, 0, 5]\)[/tex]
- Row 4: [tex]\([4, 1, 4, 4, 2]\)[/tex]
- Row 5: [tex]\([3, 2, 0, 1, 4]\)[/tex]

2. Calculate the sample mean for each shaded row:
- For Row 2: [tex]\( \frac{4+2+3+0+5}{5} = \frac{14}{5} = 2.8 \)[/tex]
- For Row 4: [tex]\( \frac{4+1+4+4+2}{5} = \frac{15}{5} = 3.0 \)[/tex]
- For Row 5: [tex]\( \frac{3+2+0+1+4}{5} = \frac{10}{5} = 2.0 \)[/tex]

3. Determine the range of these sample means:
- The sample means are: [tex]\( 2.8, 3.0, \)[/tex] and [tex]\( 2.0 \)[/tex]
- The range is calculated by subtracting the smallest mean from the largest mean: [tex]\( 3.0 - 2.0 = 1.0 \)[/tex]

Therefore, the range of the values for the sample means is [tex]\(1.0\)[/tex], so the correct choice is:

[tex]\( \boxed{1} \)[/tex]