Rewrite the formula for displacement, [tex]\( d = v_0 t + \frac{1}{2} a t^2 \)[/tex], to find [tex]\( a \)[/tex].
Arrange the equations in the correct sequence.
1. [tex]\( d - v_0 t = \frac{1}{2} a t^2 \)[/tex]
2. [tex]\( 2(d - v_0 t) = a t^2 \)[/tex]
3. [tex]\( a = \frac{2(d - v_0 t)}{t^2} \)[/tex]
Available tiles:
- [tex]\( d + v_0 t = \frac{1}{2} a t^2 \)[/tex]
- [tex]\( 2(d + v_0 t) = a t^2 \)[/tex]
- [tex]\( 2(d - v_0 t) = a t^2 \)[/tex]
- [tex]\( d - v_0 t = \frac{1}{2} a t^2 \)[/tex]
- [tex]\( a = \frac{2(d + v_0 t)}{t^2} \)[/tex]
- [tex]\( a = \frac{2(d - v_0 t)}{t^2} \)[/tex]