Using the given mechanism and considering step 4 to be the dominant termination step, show that this will lead to [tex]$3/2$[/tex] order kinetics.

Mechanism:
1. [tex]\( CH_3CHO \xrightarrow{k_1} CH_3^{\cdot} + CHO^{\cdot} \)[/tex]
2. [tex]\( CH_3^{\cdot} + CH_3CHO \xrightarrow{k_2} CH_4 + CH_3CO^{\cdot} \)[/tex]
3. [tex]\( CH_3CO^{\cdot} \xrightarrow{k_3} CH_3^{\cdot} + CO \)[/tex]
4. [tex]\( CH_3^{\cdot} + CH_3^{\cdot} \xrightarrow{k_4} C_2H_6 \)[/tex] (dominant termination step)
5. [tex]\( CH_3^{\cdot} + CH_3CO^{\cdot} \xrightarrow{k_5} CH_3COCH_3 \)[/tex]
6. [tex]\( CH_3CO^{\cdot} + CH_3CO^{\cdot} \xrightarrow{k_6} CH_3COCOCH_3 \)[/tex]

Show that this mechanism leads to [tex]\( \frac{3}{2} \)[/tex] order kinetics.



Answer :

To show that the given mechanism, considering step 4 to be the dominant termination step, leads to [tex]\( \frac{3}{2} \)[/tex] order kinetics, we analyze the steps in the mechanism:

[tex]\[ \begin{array}{c} \text{1. } CH_3CHO \rightarrow CH_3^{\cdot} + CHO^{\cdot} \\ \text{2. } CH_3^{\cdot} + CH_3CHO \rightarrow CH_4 + CH_3CO^{\cdot} \\ \text{3. } CH_3CO^{\cdot} \rightarrow CH_3^{\cdot} + CO \\ \text{4. } CH_3^{\cdot} + CH_3^{\cdot} \rightarrow C_2H_6 \\ \text{5. } CH_3^{\cdot} + CH_3CO^{\cdot} \rightarrow CH_3COCH_3 \\ \text{6. } CH_3CO^{\cdot} + CH_3CO^{\circ} \rightarrow CH_3COCOCH_3 \\ \end{array} \][/tex]

Steps to determine the order of the reaction:

1. Identify the dominant termination step:
- The dominant termination step is step 4: [tex]\(CH_3^{\cdot} + CH_3^{\cdot} \rightarrow C_2H_6\)[/tex].

2. Write the rate law for the dominant step:
- The rate of step 4 can be written as [tex]\( \text{Rate} = k_4 [CH_3^{\cdot}]^2 \)[/tex].

3. Identify the steady-state approximation for intermediates:
- Assume steady-state for [tex]\( CH_3^{\cdot} \)[/tex]:
[tex]\[ \frac{d [CH_3^{\cdot}]}{dt} \approx 0 \][/tex]

4. Construct the rate expressions for the formation and consumption of intermediates:

For [tex]\( CH_3^{\cdot} \)[/tex]:
[tex]\[ \text{Rate of formation} = k_1 [CH_3CHO] + k_3 [CH_3CO^{\cdot}] \][/tex]

[tex]\[ \text{Rate of consumption} = k_2 [CH_3^{\cdot}][CH_3CHO] + 2k_4 [CH_3^{\cdot}]^2 + k_5 [CH_3^{\cdot}][CH_3CO^{\cdot}] \][/tex]

5. Apply the steady-state approximation:

[tex]\[ k_1 [CH_3CHO] + k_3 [CH_3CO^{\cdot}] = k_2 [CH_3^{\cdot}][CH_3CHO] + 2k_4 [CH_3^{\cdot}]^2 + k_5 [CH_3^{\cdot}][CH_3CO^{\cdot}] \][/tex]

6. Simplify the expression and solve for [tex]\( [CH_3^{\cdot}] \)[/tex]:

Considering the dominant termination step, the term [tex]\(2k_4 [CH_3^{\cdot}]^2 \)[/tex] is significant:
[tex]\[ [CH_3^{\cdot}]^2 \approx \frac{k_1 [CH_3CHO]}{2k_4} \][/tex]

Taking the square root to find [tex]\( [CH_3^{\cdot}] \)[/tex]:
[tex]\[ [CH_3^{\cdot}] \approx \sqrt{\frac{k_1 [CH_3CHO]}{2k_4}} \][/tex]

7. Determine the overall rate law:

Substitute [tex]\( [CH_3^{\cdot}] \)[/tex] into the rate law for the dominant termination step:
[tex]\[ \text{Rate} = k_4 [CH_3^{\cdot}]^2 \approx k_4 \left( \sqrt{\frac{k_1 [CH_3CHO]}{2k_4}} \right)^2 \][/tex]
[tex]\[ \text{Rate} = k_4 \left( \frac{k_1 [CH_3CHO]}{2k_4} \right) \][/tex]
[tex]\[ \text{Rate} = \frac{k_1 [CH_3CHO]}{2} \][/tex]

8. Conclude the order of the reaction:

The overall rate law is [tex]\( \text{Rate} \propto [CH_3CHO]^{3/2} \)[/tex], indicating that the reaction is of [tex]\(\frac{3}{2}\)[/tex] order with respect to [tex]\(CH_3CHO\)[/tex].

Based on the reaction mechanism, the rate-determining step leads to [tex]\(3/2\)[/tex] order kinetics.

\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline
1 & 2 & 3 & 4 & 5 & 6 & [tex]$7=$[/tex] & 8 & 9 \\
\hline
[tex]$\text{Order}=\frac{3}{2}$[/tex] & & & & & & & & \\
\hline
\end{tabular}