Answer :
To find the additive inverse of the given expression
[tex]\[ 375^{-} - \left(11 s^{-} + 160 \, \text{in}\right), \][/tex]
we need to simplify the expression inside the parentheses and then determine its additive inverse. Here are the steps to solve this problem:
### Simplification of the Inner Expression
1. Express the inner term: The inner term is [tex]\( 11 s^{-} + 160 \, \text{in} \)[/tex].
2. Substitute the given value [tex]\( s = 1 \)[/tex] into the equation:
[tex]\[ 11 s^{-} \implies 11 \cdot 1 = 11. \][/tex]
3. Now add this result to [tex]\( 160 \)[/tex]:
[tex]\[ 11 + 160 = 171. \][/tex]
So, the simplified form of the expression inside the parentheses is [tex]\( 171 \)[/tex].
### Finding the Additive Inverse
4. The additive inverse of a number [tex]\( y \)[/tex] is [tex]\(-y\)[/tex]. Hence, the additive inverse of [tex]\( 171 \)[/tex] is:
[tex]\[ -171. \][/tex]
Thus, the detailed steps lead us to the results [tex]\( 171 \)[/tex] and its additive inverse [tex]\( -171 \)[/tex].
[tex]\[ 375^{-} - \left(11 s^{-} + 160 \, \text{in}\right), \][/tex]
we need to simplify the expression inside the parentheses and then determine its additive inverse. Here are the steps to solve this problem:
### Simplification of the Inner Expression
1. Express the inner term: The inner term is [tex]\( 11 s^{-} + 160 \, \text{in} \)[/tex].
2. Substitute the given value [tex]\( s = 1 \)[/tex] into the equation:
[tex]\[ 11 s^{-} \implies 11 \cdot 1 = 11. \][/tex]
3. Now add this result to [tex]\( 160 \)[/tex]:
[tex]\[ 11 + 160 = 171. \][/tex]
So, the simplified form of the expression inside the parentheses is [tex]\( 171 \)[/tex].
### Finding the Additive Inverse
4. The additive inverse of a number [tex]\( y \)[/tex] is [tex]\(-y\)[/tex]. Hence, the additive inverse of [tex]\( 171 \)[/tex] is:
[tex]\[ -171. \][/tex]
Thus, the detailed steps lead us to the results [tex]\( 171 \)[/tex] and its additive inverse [tex]\( -171 \)[/tex].