4. Find the value of:

(i) [tex]\(\sqrt{7.84}\)[/tex]

(iii) [tex]\(\sqrt{0.00000081}\)[/tex]

(v) [tex]\(\sqrt{14.197824}\)[/tex]

(vii) [tex]\(\sqrt{152.5225}\)[/tex]

(ix) [tex]\(\sqrt{327.935881}\)[/tex]



Answer :

Sure! Let's find the values of the square roots for the given numbers:

(i) [tex]\(\sqrt{7.84}\)[/tex]

The square root of [tex]\(7.84\)[/tex] is [tex]\(2.8\)[/tex].

(iii) [tex]\(\sqrt{0.00000081}\)[/tex]

The square root of [tex]\(0.00000081\)[/tex] is [tex]\(0.0009\)[/tex].

(v) [tex]\(\sqrt{14.197824}\)[/tex]

The square root of [tex]\(14.197824\)[/tex] is [tex]\(3.7680000000000002\)[/tex].

(vii) [tex]\(\sqrt{152.5225}\)[/tex]

The square root of [tex]\(152.5225\)[/tex] is [tex]\(12.35\)[/tex].

(ix) [tex]\(\sqrt{327.935881}\)[/tex]

The square root of [tex]\(327.935881\)[/tex] is [tex]\(18.108999999999998\)[/tex].

So, summarizing these results:

(i) [tex]\(\sqrt{7.84} = 2.8\)[/tex]

(iii) [tex]\(\sqrt{0.00000081} = 0.0009\)[/tex]

(v) [tex]\(\sqrt{14.197824} = 3.7680000000000002\)[/tex]

(vii) [tex]\(\sqrt{152.5225} = 12.35\)[/tex]

(ix) [tex]\(\sqrt{327.935881} = 18.108999999999998\)[/tex]