Answer :
Let's solve the simultaneous equations step-by-step:
1. Equations Given:
[tex]\[ \begin{array}{l} 2x + 3y = 13 \quad \cdots (1) \\ 4x - y = -2 \quad \cdots (2) \end{array} \][/tex]
2. Express one variable in terms of the other using Equation (2):
[tex]\[ 4x - y = -2 \implies y = 4x + 2 \quad \cdots (3) \][/tex]
3. Substitute the expression for [tex]\( y \)[/tex] from Equation (3) into Equation (1):
[tex]\[ 2x + 3(4x + 2) = 13 \][/tex]
[tex]\[ 2x + 12x + 6 = 13 \][/tex]
[tex]\[ 14x + 6 = 13 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
[tex]\[ 14x = 13 - 6 \][/tex]
[tex]\[ 14x = 7 \][/tex]
[tex]\[ x = \frac{7}{14} \][/tex]
[tex]\[ x = \frac{1}{2} \][/tex]
5. Substitute [tex]\( x = \frac{1}{2} \)[/tex] back into Equation (3) to find [tex]\( y \)[/tex]:
[tex]\[ y = 4 \left( \frac{1}{2} \right) + 2 \][/tex]
[tex]\[ y = 2 + 2 \][/tex]
[tex]\[ y = 4 \][/tex]
6. Solution:
[tex]\[ \boxed{x = \frac{1}{2}, \, y = 4} \][/tex]
Thus, the solution to the simultaneous equations is [tex]\( x = \frac{1}{2} \)[/tex] and [tex]\( y = 4 \)[/tex].
1. Equations Given:
[tex]\[ \begin{array}{l} 2x + 3y = 13 \quad \cdots (1) \\ 4x - y = -2 \quad \cdots (2) \end{array} \][/tex]
2. Express one variable in terms of the other using Equation (2):
[tex]\[ 4x - y = -2 \implies y = 4x + 2 \quad \cdots (3) \][/tex]
3. Substitute the expression for [tex]\( y \)[/tex] from Equation (3) into Equation (1):
[tex]\[ 2x + 3(4x + 2) = 13 \][/tex]
[tex]\[ 2x + 12x + 6 = 13 \][/tex]
[tex]\[ 14x + 6 = 13 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
[tex]\[ 14x = 13 - 6 \][/tex]
[tex]\[ 14x = 7 \][/tex]
[tex]\[ x = \frac{7}{14} \][/tex]
[tex]\[ x = \frac{1}{2} \][/tex]
5. Substitute [tex]\( x = \frac{1}{2} \)[/tex] back into Equation (3) to find [tex]\( y \)[/tex]:
[tex]\[ y = 4 \left( \frac{1}{2} \right) + 2 \][/tex]
[tex]\[ y = 2 + 2 \][/tex]
[tex]\[ y = 4 \][/tex]
6. Solution:
[tex]\[ \boxed{x = \frac{1}{2}, \, y = 4} \][/tex]
Thus, the solution to the simultaneous equations is [tex]\( x = \frac{1}{2} \)[/tex] and [tex]\( y = 4 \)[/tex].
Answer:
x = 0.5
y = 4
Step-by-step explanation:
Given:
- 2x + 3y = 13 (Equation 1)
- 4x - y = -2 (Equation 2)
Firstly, make y the subject of the formula in equation 2 for simplicity.
Note: you can still use Equation 1 if you want to do so.
4x - y = -2
4x - y + 2 = -2 + 2
4x + 2 - y + y = y
y = 4x + 2 (Let's call that Equation 3)
Next step, Substituting equation 3 to equation 1
What is substitution?
Substitution in simutaneous equations is the process of inserting values of variables into other equations.
For example, x = 3 and y = 2x then y = 2 * 3 = 6
2x + 3y = 13
Where:
- y = 4x + 2
2x + 3(4x + 2) = 13
2x + 12x + 6 = 13
14x = 13 - 6
14x = 7
x = 7/14 = 1/2 = 0.5
The value of x simplifies to 0.5 or [tex]\frac{1}{2} \text{ in fraction}[/tex]
Using the value of x we can plot it into Equation 2
4x - y = -2
4(0.5) - y = -2
2 - y = -2
2 + 2 = y
y = 4
In summary, the solution of the simultaneous equations in (x, y) format results in (1/2, 4)