Remove the fractions in the equation [tex]\( \frac{5}{6} = \frac{x}{3} + \frac{1}{4} \)[/tex].

A. [tex]\( 5 = 12x + 3 \)[/tex]
B. [tex]\( 12 = 6x + 4 \)[/tex]
C. [tex]\( 5 = 6x + 4 \)[/tex]
D. [tex]\( 10 = 4x + 3 \)[/tex]
E. [tex]\( 10 = 2x + 1 \)[/tex]



Answer :

Sure, let's solve the given equation [tex]\( \frac{5}{6} = \frac{x}{3} + \frac{1}{4} \)[/tex] step-by-step.

Step-by-Step Solution:

1. Find a common denominator to eliminate the fractions:
The denominators in the given equation are 6, 3, and 4. The least common multiple (LCM) of these denominators is 12.

2. Multiply every term by the common denominator (12):
[tex]\[ 12 \cdot \frac{5}{6} = 12 \cdot \left( \frac{x}{3} + \frac{1}{4} \right) \][/tex]

3. Simplify each term after multiplication:
[tex]\[ 12 \cdot \frac{5}{6} = 12 \cdot \frac{5}{6} = 2 \cdot 5 = 10 \][/tex]
[tex]\[ 12 \cdot \left( \frac{x}{3} \right) = 12 \cdot \frac{x}{3} = 4x \][/tex]
[tex]\[ 12 \cdot \left( \frac{1}{4} \right) = 12 \cdot \frac{1}{4} = 3 \][/tex]

4. Rewrite the equation with the simplified terms:
[tex]\[ 10 = 4x + 3 \][/tex]

5. Solve for [tex]\( x \)[/tex]:

Subtract 3 from each side:
[tex]\[ 10 - 3 = 4x + 3 - 3 \][/tex]
[tex]\[ 7 = 4x \][/tex]

Divide both sides by 4:
[tex]\[ \frac{7}{4} = x \][/tex]
[tex]\[ x = \frac{7}{4} \][/tex]

Therefore, the solution to the equation [tex]\( \frac{5}{6} = \frac{x}{3} + \frac{1}{4} \)[/tex] is [tex]\( x = \frac{7}{4} \)[/tex].