Given that

[tex]\[
\frac{10-\sqrt{18}}{\sqrt{2}} = a + b\sqrt{2}
\][/tex]

where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are integers,

find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].



Answer :

To solve the equation [tex]\(\frac{10 - \sqrt{18}}{\sqrt{2}} = a + b \sqrt{2}\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are integers, follow these steps:

1. Rationalize the denominator:
[tex]\[ \frac{10 - \sqrt{18}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{(10 - \sqrt{18})\sqrt{2}}{(\sqrt{2})^2} = \frac{(10\sqrt{2} - \sqrt{18}\sqrt{2})}{2} \][/tex]

2. Simplify the expression:
[tex]\[ \sqrt{18} = 3\sqrt{2} \][/tex]
Substituting this back into the expression, we get:
[tex]\[ \frac{10\sqrt{2} - 3\sqrt{2}\sqrt{2}}{2} = \frac{10\sqrt{2} - 3 \cdot 2}{2} = \frac{10\sqrt{2} - 6}{2} \][/tex]

3. Separate into two fractions:
[tex]\[ \frac{10\sqrt{2} - 6}{2} = \frac{10\sqrt{2}}{2} - \frac{6}{2} \][/tex]
Simplify each fraction:
[tex]\[ \frac{10\sqrt{2}}{2} = 5\sqrt{2} \][/tex]
[tex]\[ \frac{6}{2} = 3 \][/tex]

4. Combine the simplified fractions:
[tex]\[ 5\sqrt{2} - 3 \][/tex]

Therefore, by comparing the simplified expression [tex]\(5\sqrt{2} - 3\)[/tex] to the original form [tex]\(a + b\sqrt{2}\)[/tex], we can identify that:
[tex]\[ a = -3 \quad \text{and} \quad b = 5 \][/tex]

So, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ a = -3, \quad b = 5 \][/tex]