Find the solutions to [tex]\( x^2 = 18 \)[/tex].

A. [tex]\( x = \pm 6 \sqrt{3} \)[/tex]
B. [tex]\( x = \pm 3 \sqrt{2} \)[/tex]
C. [tex]\( x = \pm 2 \sqrt{3} \)[/tex]
D. [tex]\( x = \pm 3 \sqrt{6} \)[/tex]



Answer :

To find the solutions to the equation [tex]\( x^2 = 18 \)[/tex], we need to follow these steps:

1. Isolate the variable x:
The equation given is [tex]\( x^2 = 18 \)[/tex].

2. Take the square root of both sides:
To solve for [tex]\( x \)[/tex], we take the square root of both sides of the equation. Remember that taking the square root will give us both the positive and negative roots.

[tex]\[ x = \pm \sqrt{18} \][/tex]

3. Simplify the square root of 18:
To simplify [tex]\( \sqrt{18} \)[/tex], we can factor 18 into its prime factors.

[tex]\[ 18 = 9 \times 2 \][/tex]

So, we can write:

[tex]\[ \sqrt{18} = \sqrt{9 \times 2} \][/tex]

Using the property of square roots, [tex]\( \sqrt{a \times b} = \sqrt{a} \times \sqrt{b} \)[/tex], we get:

[tex]\[ \sqrt{18} = \sqrt{9} \times \sqrt{2} \][/tex]

Since [tex]\( \sqrt{9} = 3 \)[/tex], we have:

[tex]\[ \sqrt{18} = 3 \times \sqrt{2} \][/tex]

4. Write the final solutions:
Hence, the solutions to [tex]\( x^2 = 18 \)[/tex] are:

[tex]\[ x = \pm 3\sqrt{2} \][/tex]

So, the correct choice is [tex]\( \boxed{B} \)[/tex].