Answered

18. Which of the following functions is the inverse of [tex]\( f(x)=\sqrt{x-1} \)[/tex]?

A. [tex]\( f^{-1}(x)=x^2+1 \)[/tex]

B. [tex]\( f^{-1}(x)=\sqrt{y+1} \)[/tex]

C. [tex]\( f^{-1}(x)=x^2 \)[/tex]

D. [tex]\( f^{-1}(x)=\sqrt{x+1} \)[/tex]



Answer :

To determine the inverse of the function [tex]\( f(x) = \sqrt{x - 1} \)[/tex], we need to follow these steps:

1. Define the original function: [tex]\( f(x) = \sqrt{x - 1} \)[/tex].
2. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]: [tex]\( y = \sqrt{x - 1} \)[/tex].
3. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: To find the inverse function, interchange [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt{y - 1} \][/tex]
4. Solve for [tex]\( y \)[/tex]:
- Square both sides to eliminate the square root:
[tex]\[ x^2 = y - 1 \][/tex]
- Solve for [tex]\( y \)[/tex]:
[tex]\[ y = x^2 + 1 \][/tex]

Thus, the inverse function of [tex]\( f(x) = \sqrt{x - 1} \)[/tex] is [tex]\( f^{-1}(x) = x^2 + 1 \)[/tex].

Therefore, the correct answer is:
[tex]\[ f^{-1}(x) = x^2 + 1 \][/tex]