Simplify the radical. Assume that all variables represent positive real numbers.

[tex]\[
\sqrt{\frac{19}{x^4}}
\][/tex]

A. [tex]\(\frac{\sqrt{19}}{x}\)[/tex]

B. [tex]\(\frac{\sqrt{19}}{\sqrt{x^4}}\)[/tex]

C. [tex]\(\frac{\sqrt{19}}{x^2}\)[/tex]

D. [tex]\(\frac{\sqrt{19 x^4}}{x^4}\)[/tex]



Answer :

To simplify the given radical [tex]\(\sqrt{\frac{19}{x^4}}\)[/tex], we start by separating the expressions under the square root.

[tex]\[ \sqrt{\frac{19}{x^4}} = \sqrt{19} \cdot \sqrt{\frac{1}{x^4}} \][/tex]

Next, we can simplify [tex]\(\sqrt{\frac{1}{x^4}}\)[/tex]. Recall that [tex]\(\sqrt{\frac{1}{x^4}} = \sqrt{x^{-4}}\)[/tex], which simplifies further:

[tex]\[ \sqrt{x^{-4}} = x^{-2} \][/tex]

This is because taking the square root of [tex]\(x^{-4}\)[/tex] changes the exponent from [tex]\(-4\)[/tex] to [tex]\(-2\)[/tex]. Therefore, we now have:

[tex]\[ \sqrt{\frac{19}{x^4}} = \sqrt{19} \cdot x^{-2} \][/tex]

Since [tex]\(x^{-2} = \frac{1}{x^2}\)[/tex], we can rewrite the expression as:

[tex]\[ \sqrt{19} \cdot \frac{1}{x^2} = \frac{\sqrt{19}}{x^2} \][/tex]

Hence, the simplified form of the radical [tex]\(\sqrt{\frac{19}{x^4}}\)[/tex] is:

[tex]\[ \frac{\sqrt{19}}{x^2} \][/tex]

So, the correct answer is:

[tex]\[ \boxed{\frac{\sqrt{19}}{x^2}} \][/tex]