Simplify the following expression:

[tex]\[ 4^{-\frac{11}{3}} \div 4^{-\frac{2}{3}} \][/tex]

A. [tex]\(\frac{1}{64}\)[/tex]

B. 64

C. 12

D. [tex]\(\frac{1}{12}\)[/tex]



Answer :

To simplify the given expression:

[tex]\[ 4^{-\frac{11}{3}} \div 4^{-\frac{2}{3}} \][/tex]

we will use properties of exponents. Specifically, we use the rule that states:

[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]

Here, [tex]\(a = 4\)[/tex], [tex]\(m = -\frac{11}{3}\)[/tex], and [tex]\(n = -\frac{2}{3}\)[/tex]. Substituting these values into the rule, we get:

[tex]\[ 4^{-\frac{11}{3}} \div 4^{-\frac{2}{3}} = 4^{-\frac{11}{3} - (-\frac{2}{3})} \][/tex]

Next, we need to perform the subtraction inside the exponent:

[tex]\[ -\frac{11}{3} - (-\frac{2}{3}) = -\frac{11}{3} + \frac{2}{3} \][/tex]

To subtract these fractions, we combine them into a single fraction:

[tex]\[ -\frac{11}{3} + \frac{2}{3} = -\frac{11 - 2}{3} = -\frac{9}{3} \][/tex]

Now, simplify the fraction:

[tex]\[ -\frac{9}{3} = -3 \][/tex]

So, the expression simplifies to:

[tex]\[ 4^{-3} \][/tex]

To further simplify, we use the property of negative exponents, which states:

[tex]\[ a^{-n} = \frac{1}{a^n} \][/tex]

Applying this property to our expression:

[tex]\[ 4^{-3} = \frac{1}{4^3} \][/tex]

Now calculate [tex]\(4^3\)[/tex]:

[tex]\[ 4^3 = 4 \times 4 \times 4 = 64 \][/tex]

Therefore:

[tex]\[ 4^{-3} = \frac{1}{64} \][/tex]

Hence, the simplified form of the expression is:

[tex]\[ \frac{1}{64} \][/tex]

The correct answer is:

A. [tex]\(\frac{1}{64}\)[/tex]