Select the correct answer.

What is the simplified form of this expression?
[tex]\[
(-3x^2 + x + 5) - (4x^2 - 2x)
\][/tex]

A. [tex]\(-7x^2 + 3x + 5\)[/tex]

B. [tex]\(7x^2 + 3x - 5\)[/tex]

C. [tex]\(x^2 - x + 5\)[/tex]

D. [tex]\(-x^2 + 3x - 11\)[/tex]



Answer :

To simplify the expression [tex]\(\left(-3x^2 + x + 5\right) - \left(4x^2 - 2x\right)\)[/tex], we need to follow these steps:

1. Distribute the negative sign inside the second set of parentheses:
[tex]\[ -3x^2 + x + 5 - 4x^2 + 2x \][/tex]

2. Combine like terms:
- Combine the [tex]\(x^2\)[/tex] terms: [tex]\(-3x^2 - 4x^2 = -7x^2\)[/tex]
- Combine the [tex]\(x\)[/tex] terms: [tex]\(x + 2x = 3x\)[/tex]
- There is only one constant term, which is [tex]\(5\)[/tex]

3. Therefore, the simplified expression is:
[tex]\[ -7x^2 + 3x + 5 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{-7x^2 + 3x + 5} \][/tex]

Thus, the correct choice is:
[tex]\[ \boxed{A} \][/tex]