To simplify the expression [tex]\(\left(-3x^2 + x + 5\right) - \left(4x^2 - 2x\right)\)[/tex], we need to follow these steps:
1. Distribute the negative sign inside the second set of parentheses:
[tex]\[
-3x^2 + x + 5 - 4x^2 + 2x
\][/tex]
2. Combine like terms:
- Combine the [tex]\(x^2\)[/tex] terms: [tex]\(-3x^2 - 4x^2 = -7x^2\)[/tex]
- Combine the [tex]\(x\)[/tex] terms: [tex]\(x + 2x = 3x\)[/tex]
- There is only one constant term, which is [tex]\(5\)[/tex]
3. Therefore, the simplified expression is:
[tex]\[
-7x^2 + 3x + 5
\][/tex]
So, the correct answer is:
[tex]\[
\boxed{-7x^2 + 3x + 5}
\][/tex]
Thus, the correct choice is:
[tex]\[
\boxed{A}
\][/tex]