Answer :
To convert microliters to liters and express the answer in scientific notation, follow these steps:
1. Understand the conversion factor between microliters and liters:
- 1 microliter (μL) is equal to [tex]\( 1 \times 10^{-6} \)[/tex] liters.
2. Convert 11 microliters to liters:
- Since [tex]\( 1 \mu L = 1 \times 10^{-6} \)[/tex] liters, we multiply 11 by [tex]\( 1 \times 10^{-6} \)[/tex].
[tex]\[ 11 \mu L = 11 \times 10^{-6} L \][/tex]
3. Express the result in scientific notation:
- Scientific notation involves representing a number as [tex]\( a \times 10^b \)[/tex], where [tex]\( 1 \leq a < 10 \)[/tex] and [tex]\( b \)[/tex] is an integer.
- For the number [tex]\( 11 \times 10^{-6} \)[/tex], we want to ensure that our coefficient [tex]\( a \)[/tex] is between 1 and 10.
- We can rewrite 11 as [tex]\( 1.1 \times 10^1 \)[/tex]:
[tex]\[ 11 = 1.1 \times 10^1 \][/tex]
- Now, substitute [tex]\( 11 \)[/tex] in the expression [tex]\( 11 \times 10^{-6} \)[/tex] with [tex]\( 1.1 \times 10^1 \)[/tex]:
[tex]\[ 11 \times 10^{-6} = (1.1 \times 10^1) \times 10^{-6} \][/tex]
4. Combine the exponents:
[tex]\[ (1.1 \times 10^1) \times 10^{-6} = 1.1 \times 10^{1 - 6} = 1.1 \times 10^{-5} \][/tex]
Therefore, 11 microliters is equal to [tex]\( 1.1 \times 10^{-5} \)[/tex] liters in scientific notation. Thus,
[tex]\[ 11 \mu L = 1.1 \times 10^{-5} L \][/tex]
1. Understand the conversion factor between microliters and liters:
- 1 microliter (μL) is equal to [tex]\( 1 \times 10^{-6} \)[/tex] liters.
2. Convert 11 microliters to liters:
- Since [tex]\( 1 \mu L = 1 \times 10^{-6} \)[/tex] liters, we multiply 11 by [tex]\( 1 \times 10^{-6} \)[/tex].
[tex]\[ 11 \mu L = 11 \times 10^{-6} L \][/tex]
3. Express the result in scientific notation:
- Scientific notation involves representing a number as [tex]\( a \times 10^b \)[/tex], where [tex]\( 1 \leq a < 10 \)[/tex] and [tex]\( b \)[/tex] is an integer.
- For the number [tex]\( 11 \times 10^{-6} \)[/tex], we want to ensure that our coefficient [tex]\( a \)[/tex] is between 1 and 10.
- We can rewrite 11 as [tex]\( 1.1 \times 10^1 \)[/tex]:
[tex]\[ 11 = 1.1 \times 10^1 \][/tex]
- Now, substitute [tex]\( 11 \)[/tex] in the expression [tex]\( 11 \times 10^{-6} \)[/tex] with [tex]\( 1.1 \times 10^1 \)[/tex]:
[tex]\[ 11 \times 10^{-6} = (1.1 \times 10^1) \times 10^{-6} \][/tex]
4. Combine the exponents:
[tex]\[ (1.1 \times 10^1) \times 10^{-6} = 1.1 \times 10^{1 - 6} = 1.1 \times 10^{-5} \][/tex]
Therefore, 11 microliters is equal to [tex]\( 1.1 \times 10^{-5} \)[/tex] liters in scientific notation. Thus,
[tex]\[ 11 \mu L = 1.1 \times 10^{-5} L \][/tex]