What is the frequency of an x-ray wave with an energy of [tex]\(2.0 \times 10^{-17} \, J\)[/tex]?

Given:
[tex]\[ h = 6.626 \times 10^{-34} \, J \cdot s \][/tex]

Express your answer in the form [tex]\( [?] \times 10^{[?]} \, Hz \)[/tex].



Answer :

To find the frequency of an x-ray wave with an energy of [tex]\( E = 2.0 \times 10^{-17} \)[/tex] Joules and Planck's constant [tex]\( h = 6.626 \times 10^{-34} \)[/tex] Joules [tex]\(\cdot\)[/tex] second, we can use the relationship between energy and frequency, which is given by the formula:

[tex]\[ E = h \cdot f \][/tex]

where [tex]\( f \)[/tex] is the frequency. Rearranging this formula to solve for [tex]\( f \)[/tex], we get:

[tex]\[ f = \frac{E}{h} \][/tex]

Substitute the given values into the formula:

[tex]\[ f = \frac{2.0 \times 10^{-17} \, \text{Joules}}{6.626 \times 10^{-34} \, \text{Joules} \cdot \text{seconds}} \][/tex]

Perform the division:

[tex]\[ f = \frac{2.0}{6.626} \times 10^{-17 - (-34)} \][/tex]

Simplify the exponent part:

[tex]\[ f = \frac{2.0}{6.626} \times 10^{17} \times 10^{34} \][/tex]

[tex]\[ f = \frac{2.0}{6.626} \times 10^{17 + 34} \][/tex]

[tex]\[ f = \frac{2.0}{6.626} \times 10^{51} \][/tex]

Now, calculate the numerical coefficient:

[tex]\[ f \approx \frac{2.0}{6.626} = 0.3018412315122246 \][/tex]

So,

[tex]\[ f \approx 3.018 \times 10^{51 - 34} \][/tex]

[tex]\[ f \approx 3.018 \times 10^{16} \][/tex]

Thus, the frequency of the x-ray wave is:

[tex]\[ f \approx 3.018 \times 10^{16} \, \text{Hz} \][/tex]