Complete the table.

[tex]\[
\begin{tabular}{c|c|c}
Fraction & Percentage & Decimal \\
\hline
$\frac{1}{5}$ & $20 \%$ & 0.2 \\
\hline
$1/4$ & $25 \%$ & 0.25 \\
\hline
$\frac{1}{2}$ & & \\
\hline
$\square$ & $66.6\%$ & $0.6$
\end{tabular}
\][/tex]



Answer :

Sure, let's complete the table step-by-step.

1. For the fraction [tex]\(\frac{1}{2}\)[/tex]:

- Fraction: [tex]\(\frac{1}{2}\)[/tex]
- Percentage: A fraction of [tex]\(\frac{1}{2}\)[/tex] is equivalent to 50% when converted to a percentage.

[tex]\(\frac{1}{2} \times 100 = 50\%\)[/tex]

- Decimal: A fraction of [tex]\(\frac{1}{2}\)[/tex] converts to a decimal of 0.5.

2. For the percentage [tex]\(66.\dot{6} \%\)[/tex]:

- Percentage: [tex]\(66.\dot{6}\%\)[/tex]
- Fraction: [tex]\(66.\dot{6}\%\)[/tex] as a fraction can be represented as the repeating decimal [tex]\(0.\dot{6}\)[/tex] which is [tex]\(\frac{2}{3}\)[/tex] in fraction form.

3. For the decimal [tex]\(0.\dot{6}\)[/tex]:

- Decimal: [tex]\(0.\dot{6}\)[/tex]
- Fraction: As noted above, [tex]\(0.\dot{6}\)[/tex] repeats and is equivalent to the fraction [tex]\(\frac{2}{3}\)[/tex].

4. Completing the table:

[tex]\[ \begin{array}{c|c|c} \text{Fraction} & \text{Percentage} & \text{Decimal} \\ \hline \frac{1}{5} & 20\% & 0.2 \\ \hline \frac{1}{4} & 25\% & 0.25 \\ \hline \frac{1}{2} & 50\% & 0.5 \\ \hline \frac{2}{3} & 66.\dot{6}\% & 0.\dot{6} \\ \end{array} \][/tex]

Therefore, the completed table is:

[tex]\[ \begin{array}{c|c|c} \text{Fraction} & \text{Percentage} & \text{Decimal} \\ \hline \frac{1}{5} & 20\% & 0.2 \\ \hline \frac{1}{4} & 25\% & 0.25 \\ \hline \frac{1}{2} & 50\% & 0.5 \\ \hline \frac{2}{3} & 66.\dot{6}\% & 0.\dot{6} \\ \end{array} \][/tex]