Sure, let's expand the given expression step-by-step to find the simplified form.
The given expression is:
[tex]\[ 4x \left(4x^2 - x + 3\right) \][/tex]
To expand this expression, we need to distribute [tex]\(4x\)[/tex] to each term inside the parentheses. Follow these steps:
1. Multiply [tex]\(4x\)[/tex] by the first term inside the parentheses:
[tex]\[ 4x \times 4x^2 = 16x^3 \][/tex]
2. Multiply [tex]\(4x\)[/tex] by the second term inside the parentheses:
[tex]\[ 4x \times (-x) = -4x^2 \][/tex]
3. Multiply [tex]\(4x\)[/tex] by the third term inside the parentheses:
[tex]\[ 4x \times 3 = 12x \][/tex]
Now, combine all these results:
[tex]\[ 16x^3 - 4x^2 + 12x \][/tex]
So, the expanded form of the given expression [tex]\( 4x \left(4x^2 - x + 3\right) \)[/tex] is:
[tex]\[ 16x^3 - 4x^2 + 12x \][/tex]