What is the rate of change of the function represented by the table?

[tex]\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
1 & -8.5 \\
\hline
2 & -6 \\
\hline
3 & -3.5 \\
\hline
4 & -1 \\
\hline
\end{array}
\][/tex]

A. -2.5
B. -1
C. 1
D. 2.5



Answer :

To determine the rate of change of the function represented by the given table, we need to follow these steps:

1. Identify the points on the table:
- Point 1: [tex]\( (1, -8.5) \)[/tex]
- Point 2: [tex]\( (2, -6) \)[/tex]
- Point 3: [tex]\( (3, -3.5) \)[/tex]
- Point 4: [tex]\( (4, -1) \)[/tex]

2. Calculate the change in [tex]\( y \)[/tex] ([tex]\(\Delta y\)[/tex]) over the range of [tex]\( y \)[/tex] values:
[tex]\[ \Delta y = y_{\text{final}} - y_{\text{initial}} = -1 - (-8.5) \][/tex]
[tex]\[ \Delta y = -1 + 8.5 = 7.5 \][/tex]

3. Calculate the change in [tex]\( x \)[/tex] ([tex]\(\Delta x\)[/tex]) over the range of [tex]\( x \)[/tex] values:
[tex]\[ \Delta x = x_{\text{final}} - x_{\text{initial}} = 4 - 1 \][/tex]
[tex]\[ \Delta x = 3 \][/tex]

4. Finally, calculate the rate of change ([tex]\(\frac{\Delta y}{\Delta x}\)[/tex]):
[tex]\[ \text{Rate of change} = \frac{\Delta y}{\Delta x} = \frac{7.5}{3} \][/tex]
[tex]\[ \text{Rate of change} = 2.5 \][/tex]

Therefore, the rate of change of the function represented by the given table is [tex]\( 2.5 \)[/tex].