Certainly! Let's complete the table step-by-step by determining the total cost [tex]\( y \)[/tex] for each given number of tickets [tex]\( x \)[/tex].
We start with the initial information:
- When [tex]\( x = 0 \)[/tex] (0 tickets), the total cost [tex]\( y \)[/tex] is 20 dollars.
Next, we will fill in the remaining values:
1. For [tex]\( x = 2 \)[/tex]:
- The total cost [tex]\( y \)[/tex] for 2 tickets is 30 dollars.
2. For [tex]\( x = 4 \)[/tex]:
- The total cost [tex]\( y \)[/tex] for 4 tickets is 40 dollars.
3. For [tex]\( x = 6 \)[/tex]:
- The total cost [tex]\( y \)[/tex] for 6 tickets is 50 dollars.
4. For [tex]\( x = 8 \)[/tex]:
- The total cost [tex]\( y \)[/tex] for 8 tickets is 60 dollars.
Now we can complete the table with the calculated costs:
[tex]\[
\begin{tabular}{|l|c|c|c|c|c|}
\hline
$x$ (number of tickets) & 0 & 2 & 4 & 6 & 8 \\
\hline
$y$ (total cost in dollars) & 20 & 30 & 40 & 50 & 60 \\
\hline
\end{tabular}
\][/tex]