Sure! Let's break down the given expression step by step:
The expression we need to solve is: [tex]\(\sqrt{90} + 2^4 - 6 + 5 + 3 - 5^2\)[/tex]
1. Calculate [tex]\(\sqrt{90}\)[/tex]:
[tex]\[
\sqrt{90} \approx 9.486832980505138
\][/tex]
2. Calculate [tex]\(2^4\)[/tex]:
[tex]\[
2^4 = 16
\][/tex]
3. The subtraction [tex]\( -6 \)[/tex]:
[tex]\[
-6
\][/tex]
4. The addition [tex]\( +5 \)[/tex]:
[tex]\[
5
\][/tex]
5. The addition [tex]\( +3 \)[/tex]:
[tex]\[
3
\][/tex]
6. Calculate [tex]\(5^2\)[/tex]:
[tex]\[
5^2 = 25
\][/tex]
Then the subtraction [tex]\(-25\)[/tex]:
[tex]\[
-25
\][/tex]
Now, we combine all these results together:
[tex]\[
\sqrt{90} + 2^4 - 6 + 5 + 3 - 5^2 \approx 9.486832980505138 + 16 - 6 + 5 + 3 - 25
\][/tex]
Let's perform the arithmetic step by step:
[tex]\[
= 9.486832980505138 + 16
\][/tex]
[tex]\[
= 25.486832980505138
\][/tex]
[tex]\[
= 25.486832980505138 - 6
\][/tex]
[tex]\[
= 19.486832980505138
\][/tex]
[tex]\[
= 19.486832980505138 + 5
\][/tex]
[tex]\[
= 24.486832980505138
\][/tex]
[tex]\[
= 24.486832980505138 + 3
\][/tex]
[tex]\[
= 27.486832980505138
\][/tex]
[tex]\[
= 27.486832980505138 - 25
\][/tex]
[tex]\[
= 2.486832980505138
\][/tex]
So, the value of [tex]\(\sqrt{90} + 2^4 - 6 + 5 + 3 - 5^2\)[/tex] is approximately [tex]\(2.486832980505138\)[/tex].