Answer :
To simplify the given expression [tex]\(2x^2 - 4x + 5 - \frac{1}{3}(x^2 - 5x + 7)\)[/tex], follow these steps:
1. Distribute the [tex]\(\frac{1}{3}\)[/tex] across the terms inside the parenthesis:
[tex]\[ \frac{1}{3}(x^2 - 5x + 7) = \frac{1}{3}x^2 - \frac{5}{3}x + \frac{7}{3} \][/tex]
2. Rewrite the expression by including the distributed terms:
[tex]\[ 2x^2 - 4x + 5 - \left( \frac{1}{3}x^2 - \frac{5}{3}x + \frac{7}{3} \right) \][/tex]
3. Distribute the negative sign across the terms inside the parenthesis:
[tex]\[ 2x^2 - 4x + 5 - \frac{1}{3}x^2 + \frac{5}{3}x - \frac{7}{3} \][/tex]
4. Combine like terms:
- For [tex]\(x^2\)[/tex] terms:
[tex]\[ 2x^2 - \frac{1}{3}x^2 = \left(2 - \frac{1}{3}\right)x^2 = \frac{6}{3}x^2 - \frac{1}{3}x^2 = \frac{5}{3}x^2 = 1.66666666666667x^2 \][/tex]
- For [tex]\(x\)[/tex] terms:
[tex]\[ -4x + \frac{5}{3}x = -\frac{12}{3}x + \frac{5}{3}x = \left(-4 + \frac{5}{3}\right)x = -\left(4 - \frac{5}{3}\right)x = -\left(\frac{12}{3} - \frac{5}{3}\right)x = -\frac{7}{3}x = -2.33333333333333x \][/tex]
- For constant terms:
[tex]\[ 5 - \frac{7}{3} = \frac{15}{3} - \frac{7}{3} = \frac{8}{3} = 2.66666666666667 \][/tex]
5. Write down the simplified expression by combining all the simplified terms:
[tex]\[ 1.66666666666667x^2 - 2.33333333333333x + 2.66666666666667 \][/tex]
Thus, the simplified form of the given expression is:
[tex]\[ 1.66666666666667x^2 - 2.33333333333333x + 2.66666666666667 \][/tex]
1. Distribute the [tex]\(\frac{1}{3}\)[/tex] across the terms inside the parenthesis:
[tex]\[ \frac{1}{3}(x^2 - 5x + 7) = \frac{1}{3}x^2 - \frac{5}{3}x + \frac{7}{3} \][/tex]
2. Rewrite the expression by including the distributed terms:
[tex]\[ 2x^2 - 4x + 5 - \left( \frac{1}{3}x^2 - \frac{5}{3}x + \frac{7}{3} \right) \][/tex]
3. Distribute the negative sign across the terms inside the parenthesis:
[tex]\[ 2x^2 - 4x + 5 - \frac{1}{3}x^2 + \frac{5}{3}x - \frac{7}{3} \][/tex]
4. Combine like terms:
- For [tex]\(x^2\)[/tex] terms:
[tex]\[ 2x^2 - \frac{1}{3}x^2 = \left(2 - \frac{1}{3}\right)x^2 = \frac{6}{3}x^2 - \frac{1}{3}x^2 = \frac{5}{3}x^2 = 1.66666666666667x^2 \][/tex]
- For [tex]\(x\)[/tex] terms:
[tex]\[ -4x + \frac{5}{3}x = -\frac{12}{3}x + \frac{5}{3}x = \left(-4 + \frac{5}{3}\right)x = -\left(4 - \frac{5}{3}\right)x = -\left(\frac{12}{3} - \frac{5}{3}\right)x = -\frac{7}{3}x = -2.33333333333333x \][/tex]
- For constant terms:
[tex]\[ 5 - \frac{7}{3} = \frac{15}{3} - \frac{7}{3} = \frac{8}{3} = 2.66666666666667 \][/tex]
5. Write down the simplified expression by combining all the simplified terms:
[tex]\[ 1.66666666666667x^2 - 2.33333333333333x + 2.66666666666667 \][/tex]
Thus, the simplified form of the given expression is:
[tex]\[ 1.66666666666667x^2 - 2.33333333333333x + 2.66666666666667 \][/tex]