Two spheres have surface areas of [tex]\(100\pi\)[/tex] units[tex]\(^2\)[/tex] and [tex]\(36\pi\)[/tex] units[tex]\(^2\)[/tex].

If the volume of the larger sphere is [tex]\(\frac{500}{3}\pi\)[/tex] units[tex]\(^3\)[/tex], determine the following measures:

- Scale factor [tex]\(=\ \square\)[/tex]
- Radius of smaller sphere [tex]\(=\ \square\)[/tex] units
- Radius of larger sphere [tex]\(=\ \square\)[/tex] units
- Volume of smaller sphere [tex]\(=\ \square \pi\)[/tex] units[tex]\(^3\)[/tex]



Answer :

Let's go through the problem step-by-step to find all the required measures.

1. Scale Factor:
The surface areas of the two spheres are given as [tex]\( 100\pi \)[/tex] square units and [tex]\( 36\pi \)[/tex] square units. To find the scale factor, we use the ratio of the surface areas and take the square root of that ratio because the surface area of a sphere is proportional to the square of its radius.

[tex]\[ \text{Scale Factor} = \sqrt{\frac{\text{Surface Area of Larger Sphere}}{\text{Surface Area of Smaller Sphere}}} = \sqrt{\frac{100\pi}{36\pi}} = \sqrt{\frac{100}{36}} = \sqrt{\frac{25}{9}} = \frac{5}{3} = 1.6667 \][/tex]

Thus, the scale factor is [tex]\( 1.6667 \)[/tex].

2. Radius of the Smaller Sphere:
The surface area of the sphere is given by the formula [tex]\( 4\pi r^2 \)[/tex]. Using the surface area of the smaller sphere:

[tex]\[ 4\pi r_{\text{small}}^2 = 36\pi \][/tex]

Dividing both sides by [tex]\( 4\pi \)[/tex],

[tex]\[ r_{\text{small}}^2 = 9 \implies r_{\text{small}} = \sqrt{9} = 3 \][/tex]

So, the radius of the smaller sphere is [tex]\( 3 \)[/tex] units.

3. Radius of the Larger Sphere:
Similarly, using the surface area of the larger sphere:

[tex]\[ 4\pi r_{\text{large}}^2 = 100\pi \][/tex]

Dividing both sides by [tex]\( 4\pi \)[/tex],

[tex]\[ r_{\text{large}}^2 = 25 \implies r_{\text{large}} = \sqrt{25} = 5 \][/tex]

So, the radius of the larger sphere is [tex]\( 5 \)[/tex] units.

4. Volume of the Smaller Sphere:
The volume of a sphere is given by the formula [tex]\( \frac{4}{3}\pi r^3 \)[/tex]. We can use the ratio of the cube of the radii to find the volume of the smaller sphere. Given that the volume of the larger sphere is [tex]\( \frac{500}{3}\pi \)[/tex] cubic units and the radii we calculated:

[tex]\[ \left(\frac{r_{\text{small}}}{r_{\text{large}}}\right)^3 = \left(\frac{3}{5}\right)^3 = \frac{27}{125} \][/tex]

Using the volume of the larger sphere:

[tex]\[ \text{Volume of Smaller Sphere} = \frac{27}{125} \times \frac{500}{3}\pi = \frac{27 \times 500}{125 \times 3}\pi = \frac{13500}{375}\pi = 36\pi \text{ cubic units} \][/tex]

So, the volume of the smaller sphere is [tex]\( 113.09733552923254 \pi \)[/tex] cubic units.

In summary, we have:
- Scale factor = [tex]\( 1.6667 \)[/tex]
- Radius of smaller sphere = [tex]\( 3 \)[/tex] units
- Radius of larger sphere = [tex]\( 5 \)[/tex] units
- Volume of smaller sphere = [tex]\( 113.09733552923254 \)[/tex] cubic units