Answer :

To convert the recurring decimal [tex]\( 0.\overline{7} \)[/tex] to a fraction, follow these steps:

1. Let [tex]\( x \)[/tex] be the repeating decimal, so [tex]\( x = 0.\overline{7} \)[/tex].

2. To eliminate the repeating part, multiply both sides of the equation by 10 (since there is one repeating digit):
[tex]\[ 10x = 7.\overline{7} \][/tex]

3. Next, set up an equation by subtracting the original [tex]\( x \)[/tex] from the new equation:
[tex]\[ 10x - x = 7.\overline{7} - 0.\overline{7} \][/tex]

4. Simplify the equation:
[tex]\[ 9x = 7 \][/tex]

5. Solve for [tex]\( x \)[/tex] by dividing both sides by 9:
[tex]\[ x = \frac{7}{9} \][/tex]

So, the recurring decimal [tex]\( 0.\overline{7} \)[/tex] as a fraction is [tex]\( \frac{7}{9} \)[/tex].