Find the domain of the function.

[tex]\[ g(x) = \frac{x+9}{x^2-4} \][/tex]

The domain is [tex]\(\square\)[/tex].

(Type your answer in interval notation)



Answer :

To find the domain of the function [tex]\( g(x) = \frac{x+9}{x^2 - 4} \)[/tex], we need to identify the values of [tex]\( x \)[/tex] for which the function is defined. Specifically, the function is undefined whenever the denominator is zero, as division by zero is not allowed.

1. Identify the denominator of the function:
[tex]\[ x^2 - 4 \][/tex]

2. Set the denominator equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 4 = 0 \][/tex]
[tex]\[ (x - 2)(x + 2) = 0 \][/tex]
[tex]\[ x - 2 = 0 \quad \text{or} \quad x + 2 = 0 \][/tex]
[tex]\[ x = 2 \quad \text{or} \quad x = -2 \][/tex]

So, [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex] are the values that make the denominator zero.

3. Determine the domain by excluding these values:
The domain of [tex]\( g(x) \)[/tex] is all real numbers except [tex]\( x = -2 \)[/tex] and [tex]\( x = 2 \)[/tex].

4. Express the domain in interval notation:

The real line is divided into three intervals around the points where the function is undefined:
[tex]\[ (-\infty, -2), \quad (-2, 2), \quad \text{and} \quad (2, \infty) \][/tex]

Therefore, the domain of [tex]\( g(x) \)[/tex] is:
[tex]\[ (-\infty, -2) \cup (-2, 2) \cup (2, \infty) \][/tex]

Thus, the domain of the function [tex]\( g(x) = \frac{x+9}{x^2-4} \)[/tex] is [tex]\(\boxed{(-\infty, -2) \cup (-2, 2) \cup (2, \infty)}\)[/tex].