Answer :
To determine how far a car can travel on [tex]\(3 \frac{1}{3}\)[/tex] litres of petrol, we'll go through several steps of calculation.
1. Convert the mixed number to an improper fraction:
[tex]\(3 \frac{1}{3}\)[/tex] litres can be written as an improper fraction. To do this, multiply the whole number by the denominator of the fraction part and add the numerator:
[tex]\[ 3 \frac{1}{3} = 3 + \frac{1}{3} = \frac{9}{3} + \frac{1}{3} = \frac{10}{3} \][/tex]
Therefore, [tex]\(3 \frac{1}{3}\)[/tex] litres is equivalent to [tex]\(\frac{10}{3}\)[/tex] litres.
2. Calculate the total distance:
We know that the car can travel [tex]\(18 \text{ km}\)[/tex] per litre of petrol. To find out how much distance the car will cover with [tex]\(\frac{10}{3}\)[/tex] litres of petrol, we multiply the distance per litre by the number of litres:
[tex]\[ \text{Total distance} = 18 \text{ km/litre} \times \frac{10}{3} \text{ litres} \][/tex]
3. Perform the multiplication:
[tex]\[ 18 \times \frac{10}{3} = 18 \times 3.3333333333333335 \][/tex]
4. Compute the result:
[tex]\[ 18 \times 3.3333333333333335 = 60.0 \text{ km} \][/tex]
Thus, the car will cover a distance of approximately [tex]\(60.0\)[/tex] km with [tex]\(3 \frac{1}{3}\)[/tex] litres of petrol.
1. Convert the mixed number to an improper fraction:
[tex]\(3 \frac{1}{3}\)[/tex] litres can be written as an improper fraction. To do this, multiply the whole number by the denominator of the fraction part and add the numerator:
[tex]\[ 3 \frac{1}{3} = 3 + \frac{1}{3} = \frac{9}{3} + \frac{1}{3} = \frac{10}{3} \][/tex]
Therefore, [tex]\(3 \frac{1}{3}\)[/tex] litres is equivalent to [tex]\(\frac{10}{3}\)[/tex] litres.
2. Calculate the total distance:
We know that the car can travel [tex]\(18 \text{ km}\)[/tex] per litre of petrol. To find out how much distance the car will cover with [tex]\(\frac{10}{3}\)[/tex] litres of petrol, we multiply the distance per litre by the number of litres:
[tex]\[ \text{Total distance} = 18 \text{ km/litre} \times \frac{10}{3} \text{ litres} \][/tex]
3. Perform the multiplication:
[tex]\[ 18 \times \frac{10}{3} = 18 \times 3.3333333333333335 \][/tex]
4. Compute the result:
[tex]\[ 18 \times 3.3333333333333335 = 60.0 \text{ km} \][/tex]
Thus, the car will cover a distance of approximately [tex]\(60.0\)[/tex] km with [tex]\(3 \frac{1}{3}\)[/tex] litres of petrol.