Determine the average rate of change of [tex]\( f(z) = 1 - 3z^2 \)[/tex] between [tex]\( z = -2 \)[/tex] and [tex]\( z = 0 \)[/tex].



Answer :

To determine the average rate of change of the function [tex]\( f(z) = 1 - 3z^2 \)[/tex] between [tex]\( z = -2 \)[/tex] and [tex]\( z = 0 \)[/tex], we can follow these steps:

1. Calculate the function value at [tex]\( z = -2 \)[/tex]:
[tex]\[ f(-2) = 1 - 3(-2)^2 \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ f(-2) = 1 - 3(4) \][/tex]
[tex]\[ f(-2) = 1 - 12 \][/tex]
[tex]\[ f(-2) = -11 \][/tex]

2. Calculate the function value at [tex]\( z = 0 \)[/tex]:
[tex]\[ f(0) = 1 - 3(0)^2 \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ f(0) = 1 - 3(0) \][/tex]
[tex]\[ f(0) = 1 \][/tex]

3. Determine the change in the function values ([tex]\( \Delta f \)[/tex]):
[tex]\[ \Delta f = f(0) - f(-2) \][/tex]
Substituting the calculated values:
[tex]\[ \Delta f = 1 - (-11) \][/tex]
[tex]\[ \Delta f = 1 + 11 \][/tex]
[tex]\[ \Delta f = 12 \][/tex]

4. Determine the change in the input values ([tex]\( \Delta z \)[/tex]):
[tex]\[ \Delta z = 0 - (-2) \][/tex]
[tex]\[ \Delta z = 0 + 2 \][/tex]
[tex]\[ \Delta z = 2 \][/tex]

5. Calculate the average rate of change:
[tex]\[ \text{Average Rate of Change} = \frac{\Delta f}{\Delta z} \][/tex]
Substituting the values:
[tex]\[ \text{Average Rate of Change} = \frac{12}{2} \][/tex]
[tex]\[ \text{Average Rate of Change} = 6.0 \][/tex]

So,
- The function value at [tex]\( z = -2 \)[/tex] is [tex]\( -11 \)[/tex].
- The function value at [tex]\( z = 0 \)[/tex] is [tex]\( 1 \)[/tex].
- The average rate of change of the function [tex]\( f(z) = 1 - 3z^2 \)[/tex] between [tex]\( z = -2 \)[/tex] and [tex]\( z = 0 \)[/tex] is [tex]\( 6.0 \)[/tex].