Answer :
Sure, let's break down the famous equation [tex]\( E = mc^2 \)[/tex]:
1. Energy ([tex]\(E\)[/tex]): In this equation, [tex]\(E\)[/tex] symbolizes Energy. Energy is the ability to do work or produce heat. It is measured in joules (J) in the International System of Units (SI).
2. Mass ([tex]\(m\)[/tex]): The variable [tex]\(m\)[/tex] stands for Mass. Mass is a measure of the amount of matter in an object, usually measured in kilograms (kg) in the SI system.
3. Speed of light ([tex]\(c\)[/tex]): Finally, [tex]\(c\)[/tex] represents the speed of light in a vacuum. This is a constant value approximately equal to [tex]\(3 \times 10^8\)[/tex] meters per second (m/s).
So, in the equation [tex]\(E = mc^2\)[/tex]:
- [tex]\(E\)[/tex] stands for Energy,
- [tex]\(m\)[/tex] stands for Mass, and
- [tex]\(c\)[/tex] stands for the Speed of light.
Therefore, the equation encapsulates the relationship between mass and energy, indicating that the two are interchangeable and that a small amount of mass can be converted into a large amount of energy, given the large value of the speed of light squared.
1. Energy ([tex]\(E\)[/tex]): In this equation, [tex]\(E\)[/tex] symbolizes Energy. Energy is the ability to do work or produce heat. It is measured in joules (J) in the International System of Units (SI).
2. Mass ([tex]\(m\)[/tex]): The variable [tex]\(m\)[/tex] stands for Mass. Mass is a measure of the amount of matter in an object, usually measured in kilograms (kg) in the SI system.
3. Speed of light ([tex]\(c\)[/tex]): Finally, [tex]\(c\)[/tex] represents the speed of light in a vacuum. This is a constant value approximately equal to [tex]\(3 \times 10^8\)[/tex] meters per second (m/s).
So, in the equation [tex]\(E = mc^2\)[/tex]:
- [tex]\(E\)[/tex] stands for Energy,
- [tex]\(m\)[/tex] stands for Mass, and
- [tex]\(c\)[/tex] stands for the Speed of light.
Therefore, the equation encapsulates the relationship between mass and energy, indicating that the two are interchangeable and that a small amount of mass can be converted into a large amount of energy, given the large value of the speed of light squared.