Answer :
Certainly! Let's break down the expression step-by-step.
We start with the given expression:
[tex]\[ 5\left[9^2 \div \left(6^2 - 3^2\right) + 7\right] \][/tex]
1. Calculate the squares inside the parentheses and brackets:
[tex]\[ 9^2 = 81 \][/tex]
[tex]\[ 6^2 = 36 \][/tex]
[tex]\[ 3^2 = 9 \][/tex]
2. Subtract the squares in the denominator:
[tex]\[ 6^2 - 3^2 = 36 - 9 = 27 \][/tex]
3. Divide [tex]\(9^2\)[/tex] by the result from the subtraction:
[tex]\[ 9^2 \div (6^2 - 3^2) = 81 \div 27 = 3 \][/tex]
4. Add 7 to the result of the division:
[tex]\[ 3 + 7 = 10 \][/tex]
5. Multiply the result by 5:
[tex]\[ 5 \times 10 = 50 \][/tex]
So, the simplified form of the expression is [tex]\(50\)[/tex].
We start with the given expression:
[tex]\[ 5\left[9^2 \div \left(6^2 - 3^2\right) + 7\right] \][/tex]
1. Calculate the squares inside the parentheses and brackets:
[tex]\[ 9^2 = 81 \][/tex]
[tex]\[ 6^2 = 36 \][/tex]
[tex]\[ 3^2 = 9 \][/tex]
2. Subtract the squares in the denominator:
[tex]\[ 6^2 - 3^2 = 36 - 9 = 27 \][/tex]
3. Divide [tex]\(9^2\)[/tex] by the result from the subtraction:
[tex]\[ 9^2 \div (6^2 - 3^2) = 81 \div 27 = 3 \][/tex]
4. Add 7 to the result of the division:
[tex]\[ 3 + 7 = 10 \][/tex]
5. Multiply the result by 5:
[tex]\[ 5 \times 10 = 50 \][/tex]
So, the simplified form of the expression is [tex]\(50\)[/tex].
Answer:
50
Step-by-step explanation:
5 [ (9^2)/(6^2 - 3^2) + 7 ]
Using PEMDAS, we start with the parentheses:
(9^2)/(6^2 - 3^2) + 7
Calculating the exponents first.
(81)/(36 - 9) + 7
Now completing the fraction.
81/27 +7
3 +7
Add.
10
Replace the parentheses with 10.
5 [ 10]
Multiply 5 and 10.
5*10
50