Answer :

Certainly! Let's break down the expression step-by-step.

We start with the given expression:
[tex]\[ 5\left[9^2 \div \left(6^2 - 3^2\right) + 7\right] \][/tex]

1. Calculate the squares inside the parentheses and brackets:
[tex]\[ 9^2 = 81 \][/tex]
[tex]\[ 6^2 = 36 \][/tex]
[tex]\[ 3^2 = 9 \][/tex]

2. Subtract the squares in the denominator:
[tex]\[ 6^2 - 3^2 = 36 - 9 = 27 \][/tex]

3. Divide [tex]\(9^2\)[/tex] by the result from the subtraction:
[tex]\[ 9^2 \div (6^2 - 3^2) = 81 \div 27 = 3 \][/tex]

4. Add 7 to the result of the division:
[tex]\[ 3 + 7 = 10 \][/tex]

5. Multiply the result by 5:
[tex]\[ 5 \times 10 = 50 \][/tex]

So, the simplified form of the expression is [tex]\(50\)[/tex].

Answer:

50

Step-by-step explanation:

5 [ (9^2)/(6^2 - 3^2) + 7 ]

Using PEMDAS, we start with the parentheses:

(9^2)/(6^2 - 3^2) + 7

Calculating the exponents first.

(81)/(36 - 9) + 7

Now completing the fraction.

81/27  +7

3 +7

Add.

10

Replace the parentheses with 10.

5 [ 10]

Multiply 5 and 10.

5*10

50