Answer :

To simplify the expression [tex]\(4xy^2 + 3x^2 + 2y + 5xy^2 + 7y\)[/tex], we need to combine like terms. Let's break it down and group the like terms together.

1. Identify like terms:
- Terms involving [tex]\(x^2\)[/tex]
- Terms involving [tex]\(xy^2\)[/tex]
- Terms involving only [tex]\(y\)[/tex]

2. Group the like terms:
[tex]\[ 4xy^2 + 5xy^2 + 3x^2 + 2y + 7y \][/tex]

3. Combine the like terms:

- For the [tex]\(xy^2\)[/tex] terms:
[tex]\[ 4xy^2 + 5xy^2 = 9xy^2 \][/tex]

- For the [tex]\(x^2\)[/tex] term, there is only one term:
[tex]\[ 3x^2 \][/tex]

- For the [tex]\(y\)[/tex] terms:
[tex]\[ 2y + 7y = 9y \][/tex]

4. Write down the simplified expression with the combined like terms:
[tex]\[ 3x^2 + 9xy^2 + 9y \][/tex]

Therefore, the simplified form of the given expression [tex]\(4xy^2 + 3x^2 + 2y + 5xy^2 + 7y\)[/tex] is:
[tex]\[ 3x^2 + 9xy^2 + 9y \][/tex]

Answer:

9xy^2 +3x^2 + 9y

Step-by-step explanation:

4xy^2 + 3x^2 + 2y + 5xy^2 + 7y

Combine like terms.

4xy^2+ 5xy^2 + 3x^2 + 2y  + 7y

9xy^2 +3x^2 + 9y